
1. What is SQL?

2. What is a Database?

3. What are the types of SQL commands?

4. What is Primary Key?

5. What is Foreign Key?

6. What is UNIQUE Key?

7. What is the difference between Primary Key and UNIQUE Key?

8. What is NOT NULL constraint?

9. What is Default Constraint?

10. What is the difference between DELETE, TRUNCATE, and DROP?

11. What is the difference between WHERE and HAVING?

12. What are Joins in SQL?

13. What is INNER JOIN?

14. What is LEFT JOIN?

15. What is RIGHT JOIN?

16. What is FULL JOIN?

17. What is Self Join?

18. What is Cross Join?

19. What is Union and Union All?

20. What is the difference between UNION and UNION ALL?

21. What is Normalization?

22. What is Denormalization?

23. What is the difference between CHAR and VARCHAR?

24. What is the difference between SQL and MySQL?

25. What is Auto Increment in SQL?

Created by: Vinay Kumar Panika

Basic Level (Beginner)

26. What is Subquery?

27. What is Nested Query?

28. What is Correlated Subquery?

29. What is Group By in SQL?

30. What is the difference between Group By and Order By?

31. What is the use of LIMIT in SQL?

32. How to find the Second Highest Salary in SQL?

33. How to find Duplicate Records in a table?

34. What is CTE (Common Table Expression)?

35. What is Temporary Table in SQL?

36. What is Window Function in SQL?

37.
What is the difference between ROW_NUMBER(), RANK(), and
DENSE_RANK()?

38. What is CASE Statement in SQL?

39. What is COALESCE in SQL?

40. What is NVL Function in SQL?

41. What is Indexing in SQL?

42. What is Clustered Index?

43. What is Non-Clustered Index?

44. What is the difference between Clustered and Non-Clustered Index?

45. What is View in SQL?

46. What is the difference between View and Table?

47. What is Stored Procedure?

48. What is the difference between Function and Stored Procedure?

49. What is Trigger in SQL?

50. What is Cursor in SQL?

Created by: Vinay Kumar Panika

Intermediate Level

51. What is the ACID Property in SQL?

52. What is a Transaction in SQL?

53. What is the difference between COMMIT and ROLLBACK?

54. What is Savepoint in SQL?

55. What is the difference between IN and EXISTS?

56. What is the difference between DELETE and TRUNCATE?

57. What is Index Fragmentation?

58. What is the difference between RANK() and DENSE_RANK()?

59. How to fetch common records from two tables?

60. What is the difference between UNION and JOIN?

61. What is Pivot Table in SQL?

62. What is Case Sensitivity in SQL?

63. How to find the Nth Highest Salary?

64. How to get First 3 Maximum Salaries?

65. What is the difference between Drop, Delete, and Truncate?

66. How to calculate Age from Date of Birth in SQL?

67. What is Recursive Query in SQL?

68. What is the difference between Temporary Table and CTE?

69. How to find Odd and Even records in SQL?

70. What is JSON in SQL?

71. What is XML in SQL?

72. How to handle NULL values in SQL?

73. What is Dynamic SQL?

74. How to calculate Percentage in SQL?

75. How to find the Employees who earn more than their Manager?

Created by: Vinay Kumar Panika

Advanced Level

76. How to find Duplicate Emails in the Employee Table?

77. How to get the Highest Salary in each Department?

78. How to find Employees joined in the last 3 months?

79. How to Display the First 5 Records in SQL?

80. How to find the Number of Employees in each Department?

81. How to find the Last 3 Records in SQL?

82. How to find Employees without Managers?

83. How to find the First Name starting with 'A'?

84. How to fetch Alternate Rows from a table?

85. How to swap two columns in SQL?

86. How to display the Duplicate Records with their Count?

87. How to find the Highest Salary without using MAX()?

88. How to fetch common records from two tables without JOIN?

89. How to delete Duplicate Records from a table?

90. How to find the Department with the highest Employee Count?

Created by: Vinay Kumar Panika

Real-Time Scenarios

91. How to Optimize SQL Queries?

92. What is Query Execution Plan?

93. How to Improve Query Performance?

94. What is Indexing?

95. What is Table Partitioning?

96. How to Avoid Deadlocks in SQL?

97. What is the use of EXISTS in SQL?

98. What is Query Optimization?

99.
What is the Difference Between Stored Procedure and Function in
SQL?

100. What is the difference between OLTP and OLAP in SQL?

Created by: Vinay Kumar Panika

Optimization Techniques

Basic Level (Beginner)
1. What is SQL?
SQL (Structured Query Language) is a standard programming language used to
interact with relational databases. It is used to store, retrieve, update, and delete
data. SQL is also used to create and modify database structures such as tables,
views, and indexes.
Example:
 SELECT * FROM Employees;
This query retrieves all the records from the Employees table.

Created by: Vinay Kumar Panika

2. What is a Database?
A database is an organized collection of data that is stored and managed
electronically. It allows users to efficiently store, retrieve, update, and manage
data. Databases are used to handle large amounts of information in various
applications such as websites, business systems, and applications.
Example:
A customer database in an e-commerce website may store customer details like
name, email, contact number, and purchase history.

3. What are the types of SQL commands?
SQL commands are categorized into five types based on their functionality:

DDL (Data Definition Language) – Defines the structure of the database.1.
CREATE, ALTER, DROP, TRUNCATE

DML (Data Manipulation Language) – Manages data stored in the database.2.
SELECT, INSERT, UPDATE, DELETE

DCL (Data Control Language) – Controls access to the data.3.
GRANT, REVOKE

TCL (Transaction Control Language) – Manages transactions in the
database.

4.

COMMIT, ROLLBACK, SAVEPOINT
DQL (Data Query Language) – Retrieves data from the database.5.

SELECT

4. What is Primary Key?
A Primary Key is a column or a combination of columns in a table that uniquely identifies
each row in that table. It does not allow NULL values and must always contain unique
values.
Key Features:

Uniquely identifies each record
Cannot have duplicate values
Cannot contain NULL values
Only one primary key is allowed per table

Example:

Here, EmployeeID is the primary key that uniquely identifies each employee.

5. What is Foreign Key?
A Foreign Key is a column or combination of columns in one table that refers to the Primary
Key in another table. It is used to create a relationship between two tables and enforce
referential integrity.
Key Features:

Establishes a relationship between two tables
Can contain duplicate values
Can accept NULL values
Helps maintain data consistency

Example:

Here, DepartmentID in the Employees table is a foreign key that references the
DepartmentID column in the Departments table.

Created by: Vinay Kumar Panika

6. What is UNIQUE Key?
A UNIQUE Key is a constraint that ensures all values in a column or combination of
columns are distinct across all rows in the table. It prevents duplicate values but allows
NULL values (only one NULL value in most databases).
Key Features:

Ensures uniqueness of each record in the column
Allows one NULL value (depending on the database)
Multiple UNIQUE keys can be defined in a table
Helps maintain data integrity

Example:

Here, the Email column has a UNIQUE constraint, ensuring no two employees can have the
same email address.

Primary Key UNIQUE Key

Uniquely identifies each row in a table Ensures all values in the column are
unique

Does not allow NULL values Allows one NULL value (in most
databases)

Only one primary key is allowed per table Multiple UNIQUE keys can be defined
in a table

Automatically creates a unique clustered
index

Creates a unique non-clustered index

Used to uniquely identify a record Used to enforce uniqueness in a column
without being a primary identifier

Created by: Vinay Kumar Panika

7. What is the Difference Between Primary Key and UNIQUE
Key?

9. What is Default Constraint?
The Default Constraint provides a default value for a column when no value is specified
during the insertion of a new record.
Key Features:

Automatically assigns a default value if no value is provided
Helps avoid NULL values in specific columns
Can be applied to any data type

Example:

In this example, if no salary is provided while inserting a record, the Salary
column will automatically be set to 5000.

Created by: Vinay Kumar Panika

8. What is NOT NULL Constraint?
The NOT NULL constraint ensures that a column cannot have NULL values. It is used to
enforce that every row must have a value in that column.
Key Features:

Prevents insertion of NULL values
Ensures mandatory fields have data
Can be applied to one or more columns

Example:

In this example, the Name column cannot have NULL values, while the Email column can
accept NULL values.

Command Function Can
Rollback

Affects
Structure Speed

DELETE

Removes
specific rows
based on a
condition
using the
WHERE

clause

Yes (with
COMMIT/RO

LLBACK)
No

Slow (Row-by-
row deletion)

TRUNCATE
Removes all

rows from the
table without
a condition

No No Faster than
DELETE

DROP
Deletes the
entire table

including data
and structure

No Yes (Removes
table structure)

Fastest

Created by: Vinay Kumar Panika

10. What is the Difference Between DELETE, TRUNCATE, and
DROP?

Example:

Clause Purpose Used With Filter
Type

Execution
Order

WHERE Filters rows before
grouping

SELECT,
UPDATE,
DELETE

Row-level
filter

Applied before
GROUP BY

HAVING Filters groups
after grouping

SELECT with
GROUP BY

Group-level
filter

Applied after
GROUP BY

Created by: Vinay Kumar Panika

11. What is the Difference Between WHERE and HAVING?

Example:

In the WHERE clause, filtering is applied before grouping, while HAVING filters the aggregated
result.

Created by: Vinay Kumar Panika

12. What are Joins in SQL?
Joins in SQL are used to combine data from two or more tables based on a related column
between them.
Types of Joins:

INNER JOIN – Returns only matching rows from both tables.1.
LEFT JOIN – Returns all rows from the left table and matching rows from the right table.2.
RIGHT JOIN – Returns all rows from the right table and matching rows from the left
table.

3.

FULL JOIN – Returns all rows from both tables (matching and non-matching).4.
SELF JOIN – Joins a table with itself.5.
CROSS JOIN – Returns the Cartesian product of both tables (all possible combinations).6.

13. What is INNER JOIN?
INNER JOIN is used to combine rows from two or more tables based on a matching
condition between them. It returns only those records where the specified condition is true in
both tables.
Key Features:

Returns matching rows from both tables
Ignores unmatched rows
Most commonly used type of join

Syntax:

Example:

This query returns the employee names along with their department names where the
DepartmentID is common in both tables.

RIGHT JOIN is used to return all records from the right table and the matching records from the
left table. If no match is found, the result will contain NULL values from the left table.
Key Features:

Returns all rows from the right table
Returns matching rows from the left table
Displays NULL for non-matching rows from the left table

Syntax:

Example:

This query returns all department names from the Departments table, and if no employee is
assigned to a department, the Employee Name will be displayed as NULL.

Created by: Vinay Kumar Panika

14. What is LEFT JOIN?
LEFT JOIN is used to return all records from the left table and the matching records from the
right table. If no match is found, the result will contain NULL values from the right table.
Key Features:

Returns all rows from the left table
Returns matching rows from the right table
Displays NULL for non-matching rows from the right table

Syntax:

Example:

This query returns all employee names from the Employees table, and if the department is not
assigned, the Department Name will be displayed as NULL.

15. What is RIGHT JOIN?

FULL JOIN combines the results of both LEFT JOIN and RIGHT JOIN. It returns all records
from both tables, with matching rows from both sides where available. If there is no match, the
result will contain NULL values on the side where no match was found.
Key Features:

Returns all rows from both tables
Displays NULL where there is no match
Useful to find unmatched records in both tables

Syntax:

Example:

This query returns all employee names and department names, including those where there is no
matching DepartmentID between the two tables.

Created by: Vinay Kumar Panika

16. What is FULL JOIN?

17. What is Self Join?
Self Join is a type of join where a table is joined with itself to compare rows within the same table.
It is used when a table contains a hierarchical relationship or when comparing values in the same
table.
Key Features:

Joins a table with itself
Requires table aliases to differentiate table instances
Used to compare rows within the same table

Syntax:

Example:

In this example, the Employees table joins with itself to show the employee's name along with their
manager's name based on the ManagerID column.

UNION UNION ALL

Removes duplicate rows Includes duplicate rows

Slower due to duplicate removal Faster as no duplicate removal

Automatically sorts the result set Does not sort the result set

Syntax: UNION Syntax: UNION ALL

Created by: Vinay Kumar Panika

18. What is Cross Join?
Cross Join returns the Cartesian product of two tables, meaning it combines every row from the
first table with every row from the second table. It does not require any condition.
Key Features:

Combines all rows from both tables
Number of rows in the result = (Rows in Table 1) × (Rows in Table 2)
Can produce large result sets if tables have many rows

Syntax:

Example:

This query returns all possible combinations of Employees and Departments, with every employee
paired with every department.

19. What is Union and Union All?
UNION and UNION ALL are used to combine the result sets of two or more SELECT
statements.

Syntax:

Criteria UNION UNION ALL

Duplicates Removes duplicate rows Includes all duplicate rows

Performance Slower (due to duplicate
removal)

Faster (no duplicate removal)

Sorting Automatically sorts the result
set

Does not sort the result set

Usage Used when duplicate data is not
required

Used when duplicate data needs
to be preserved

Syntax
SELECT column FROM table1
UNION SELECT column
FROM table2;

SELECT column FROM table1
UNION ALL SELECT column
FROM table2;

Created by: Vinay Kumar Panika
Example (UNION):

This query combines employee and manager names without duplicates.

Example (UNION ALL):

This query combines employee and manager names, including duplicates.

20. What is the difference between UNION and UNION ALL?

EmployeeID Employee
Name Department DepartmentLocation

101 Vinay IT Bangalore

102 Awadhesh IT Bangalore

EmployeeID EmployeeName DepartmentID

101 Vinay 1

102 Awadhesh 1

Created by: Vinay Kumar Panika
21. What is Normalization?
Normalization is the process of organizing data in a database to reduce redundancy and
improve data integrity. It involves dividing large tables into smaller related tables and defining
relationships between them.
Key Features:

Reduces data redundancy
Improves data consistency
Simplifies data maintenance
Increases data integrity

Types of Normalization:
1NF (First Normal Form) – Eliminates duplicate columns and ensures each column contains
atomic values.

1.

2NF (Second Normal Form) – Ensures no partial dependency by making all non-key
attributes fully dependent on the primary key.

2.

3NF (Third Normal Form) – Removes transitive dependencies where non-key columns
depend on other non-key columns.

3.

BCNF (Boyce-Codd Normal Form) – Ensures that every determinant is a candidate key.4.

Example:

Unnormalized Table:

Normalized Table (1NF & 2NF):

Employee Table:

DepartmentID DepartmentName Location

1 IT Bangalore

EmployeeID EmployeeName DepartmentID

101 Vinay 1

102 Awadhesh 2

DepartmentID DepartmentName

1 IT

2 HR

Created by: Vinay Kumar Panika
Department Table:

Normalization improves the efficiency and consistency of the database.

22. What is Denormalization?
Denormalization is the process of combining tables or adding redundant data into a database
to improve read performance at the cost of data redundancy.
It is the opposite of Normalization, used when fast data retrieval is more important than
maintaining data integrity.
Key Features:

Improves data retrieval speed
Increases data redundancy
Reduces the number of joins required
Used in data warehouses and reporting systems

Example:
Normalized Tables:
Employee Table:

Department Table:

EmployeeID EmployeeName DepartmentName

101 Vinay IT

102 Awadhesh HR

Criteria CHAR VARCHAR

Full Form Character Variable Character

Storage Fixed-length Variable-length

Memory
Usage

Always uses the specified
length, even if fewer characters

are stored

Uses only the space required for
the actual data plus one or two

bytes for length

Performance Faster for fixed-size data Slower for varying data sizes

Padding Pads extra spaces to match the
fixed length

Does not pad spaces

Use Case When data length is consistent
(like PIN codes or gender)

When data length varies (like
names or addresses)

Created by: Vinay Kumar Panika

Denormalized Table:

In this example, the DepartmentName column is directly stored in the Employee table,
making data retrieval faster but increasing redundancy.

23. What is the Difference Between CHAR and VARCHAR?

Example:

In this example, Name will always take 10 bytes, while Address will use only the necessary
space based on the actual data length.

Criteria SQL MySQL

Definition
Structured Query Language

used to manage and
manipulate databases

Relational Database
Management System

(RDBMS) that uses SQL

Type Language Software

Usage Used to write queries to
interact with databases

Used to store, manage, and
retrieve data

Developer Standard language
developed by ANSI

Developed by Oracle
Corporation

Platform
Universal (used by many
databases like MySQL,

Oracle, SQL Server)
Specific to MySQL

Purpose Query language to
communicate with databases

Database system to store
and manage data

Created by: Vinay Kumar Panika

24. What is the difference between SQL and MySQL?

Example:
SQL:

MySQL:

MySQL stores the Employees table and processes the SQL query to retrieve data.

25. What is Auto Increment in SQL?
Auto Increment is a property in SQL that automatically generates a unique sequential number
whenever a new row is inserted into a table. It is typically used to create unique identifiers like
primary keys.
Key Features:

Automatically generates unique numbers
Commonly used with Primary Key columns
Starts from a defined value (default is 1)
Automatically increments by 1 for each new row

EmployeeID Name Salary

1 Vinay 50000

2 Awadhesh 40000

Created by: Vinay Kumar Panika
Syntax (MySQL):

Example (Insert Records):

Output:

The EmployeeID column automatically increments without user input.

Single Row Subquery: Returns only one value. 1.
Example:

Created by: Vinay Kumar Panika

Intermediate Level
26. What is Subquery?

A Subquery is a query nested inside another query in SQL.
It is used to fetch data that will be used by the main query as a condition to filter or
manipulate the result.
Key Points:

Also called Inner Query or Nested Query.
Always executes before the main query.
The result of the subquery is used by the Outer Query.
Can be used with SELECT, INSERT, UPDATE, or DELETE statements.

Syntax:

Types of Subqueries:

Explanation: It selects the employee with the highest salary.

 2. Multiple Row Subquery: Returns multiple rows of data.
Example:

Explanation: It selects employees working in the Bangalore location.

 3. Correlated Subquery: Uses each row of the outer query to execute the subquery.
Example:

Explanation: It selects employees whose salary is higher than the average salary
of their own department.

Created by: Vinay Kumar Panika

27. What is Nested Query?
A Nested Query is a query written inside another query to retrieve data based on the result of
the inner query.
It helps break down complex queries into smaller, more manageable parts.
Key Points:

Also known as Inner Query or Subquery.
The Inner Query executes first, and its result is passed to the Outer Query.
Used in SELECT, INSERT, UPDATE, or DELETE statements.
Can be used with WHERE, HAVING, and FROM clauses.

Syntax:

Example:
Find employees who work in the 'Sales' department.

Explanation:
The inner query finds the department_id for the 'Sales' department.
The outer query selects employees based on that department_id.

28. What is Correlated Subquery?
A Correlated Subquery is a subquery that depends on the values from the outer query to
execute.
It is executed repeatedly for each row of the outer query, making it slower compared to
regular subqueries.
Key Points:

The Inner Query uses columns from the Outer Query.
Executes row by row for each result of the outer query.
Cannot be executed independently without the outer query.
Used for row-by-row comparisons.

Syntax:

29. What is GROUP BY in SQL?
The GROUP BY clause in SQL is used to group rows that have the same values into summary
rows. It is typically used with aggregate functions to perform calculations on each group of data.
Key Points:

Groups data based on one or more columns.
It is used to summarize data.
Always used after the WHERE clause and before the ORDER BY clause.
Commonly used with aggregate functions like:

COUNT() – Counts the number of rows.
SUM() – Calculates the total sum.
AVG() – Calculates the average value.
MAX() – Returns the maximum value.
MIN() – Returns the minimum value.

Created by: Vinay Kumar Panika
Example:
Find employees whose salary is higher than the average salary of their department.

Explanation:
The inner query calculates the average salary of each department.
The outer query checks if the employee's salary is higher than their department's average
salary.

Syntax:

Example:
Find the total sales amount for each product category.

Conclusion:
The GROUP BY clause is essential for data summarization and helps in analyzing data patterns
efficiently.

GROUP BY ORDER BY

Used to group rows based on the same values
in one or more columns.

Used to sort the result set in ascending or
descending order.

Always works with aggregate functions like
COUNT(), SUM(), AVG(), etc.

Does not require aggregate functions.

Syntax: Comes before ORDER BY. Syntax: Always comes after GROUP BY.

Groups the result into summary rows. Sorts the entire result set.

Example: Group sales by product category.
Example: Sort sales by highest to lowest

amount.

Created by: Vinay Kumar Panika

30. What is the Difference Between GROUP BY and ORDER
BY in SQL?

Both GROUP BY and ORDER BY are SQL clauses used to organize query results, but they
serve different purposes.

Example with GROUP BY:
Find the total sales for each product category.

Example with ORDER BY:
Sort products by price in descending order.

Conclusion:
GROUP BY is used to group data and perform aggregate calculations.
ORDER BY is used to sort the final result.

Created by: Vinay Kumar Panika

31. What is the Use of LIMIT in SQL?
LIMIT is used to restrict the number of rows returned by a query.

Syntax:

Example:
Fetch top 3 highest salaries:

Conclusion:
LIMIT helps to fetch limited data and is commonly used for Top N records or
Pagination.

32. How to Find the Second Highest Salary in SQL?
Using Subquery:

Explanation:
The inner query gets the highest salary.
The outer query finds the highest salary below the top salary.

33. How to find Duplicate Records in a table?
You can find Duplicate Records using the GROUP BY clause with the HAVING keyword.

Syntax:

Explanation:
GROUP BY groups the same names.
HAVING COUNT(*) > 1 filters only duplicate names.

Created by: Vinay Kumar Panika

34. What is CTE (Common Table Expression)?
CTE (Common Table Expression) is a temporary result set that is defined within the
execution of a single SQL statement.

Syntax:

Example:
Find employees who work in the IT department and have a salary greater than 50000.

Explanation:
The CTE IT_Employees selects all employees from the IT department.
The SELECT query fetches employees with salary above 50000.

35. What is Temporary Table in SQL?
A Temporary Table in SQL is used to store temporary data during the session.
Key Points:

Automatically deleted when the session ends.
Used to store intermediate results.
Prefixed with # in SQL Server or TEMP in MySQL.

Syntax:
MySQL:

Created by: Vinay Kumar Panika

Example:
Create a temporary table to store employees with salary above 50000.

Explanation:
The table holds filtered data temporarily.
It is automatically deleted after the session ends.

SQL Server:

36. What is Window Function in SQL?
A Window Function performs calculations across a set of table rows related to the current
row without collapsing the result into a single value.
Key Points:

Works with OVER() clause.
Does not group rows like aggregate functions.
Commonly used for ranking, running totals, and moving averages.

Syntax:

Types of Window Functions:

1. ROW_NUMBER()
Assigns a unique sequential number to each row in a partition.
Syntax:

Created by: Vinay Kumar Panika2. RANK()
Assigns a rank to each row with the same values having the same rank, but skips ranks for
duplicate values.
Syntax:

3. DENSE_RANK()
Similar to RANK(), but does not skip ranks for duplicate values.
Syntax:

4. NTILE(n)
Divides the result set into n equal parts and assigns a group number to each row.
Syntax:

5. SUM()
Calculates the cumulative total of a column within a partition.
Syntax:

6. AVG()
Calculates the average value of a column within a partition.
Syntax:

7. MAX() & MIN()
Returns the maximum or minimum value in a partition.
Syntax:

8. LEAD()
Returns the next row's value in the result set.
Syntax:

Function Purpose Duplicates
Skips

Numbers
Example Usage

ROW_NUMBER Unique Rank No No Employee Ranking

RANK Rank with Skips Yes Yes Competition Rank

DENSE_RANK Rank without Skips Yes No Class Rank

NTILE Divide Rows No No Quartiles

SUM Running Total No No Salary Analysis

AVG Running Average No No Salary Average

LEAD Next Row Value No No Price Trends

LAG Previous Row Value No No Sales Trends

Created by: Vinay Kumar Panika
9. LAG()
Returns the previous row's value in the result set.
Syntax:

Summary Table:

Conclusion:
Window Functions help in performing complex calculations across result sets without
grouping them into a single row, making them essential for ranking, running totals, and
trend analysis.

Function Purpose Duplicates Skips
Numbers

Example

ROW_NUMBE
R()

Assigns unique sequential
numbers to each row

No No 1, 2, 3, 4

RANK()
Assigns rank to each row with
the same values having the
same rank

Yes Yes 1, 2, 2, 4

DENSE_RAN
K()

Assigns rank without skipping
numbers for duplicate values

Yes No 1, 2, 2, 3

Created by: Vinay Kumar Panika

37. What is the Difference Between ROW_NUMBER(),
RANK(), and DENSE_RANK()?
These three Window Functions are used to assign numbers to rows based on their order.

Key Differences:

38. What is CASE Statement in SQL?
The CASE Statement is used to apply conditional logic in SQL queries, similar to IF-ELSE
statements.
Syntax:

Example:

Created by: Vinay Kumar Panika
39. What is COALESCE in SQL?
COALESCE returns the first non-null value from a list of expressions.

Syntax:

Example:

Key Points:
Returns the first non-null value.
Used to handle NULL values.
Can accept multiple expressions.

40. What is NVL Function in SQL?
NVL function replaces NULL values with a specified value.

Syntax:

Example:

41. What is Indexing in SQL?
Indexing improves the speed of data retrieval from a table by creating a lookup structure.
Syntax:

Example:

Key Points:
Speeds up SELECT queries.
Automatically maintained by the database.
Can be created on one or more columns.
Slows down INSERT, UPDATE, DELETE operations.

Clustered Index Non-Clustered Index

Stores data physically sorted. Stores pointers to data.

Only one per table. Multiple indexes allowed.

Faster for data retrieval. Slower than Clustered Index.

Automatically created on Primary Key. Manually created on any column.

Affects physical order of table. Does not affect physical order.

Created by: Vinay Kumar Panika42. What is Clustered Index in SQL?
A Clustered Index sorts and stores the data physically in the table based on the indexed
column.

Syntax:

Example:

Key Points:
Only one clustered index is allowed per table.
Faster for data retrieval.
Automatically created on Primary Key by default.
Rearranges table rows physically.

43. What is Non-Clustered Index in SQL?
A Non-Clustered Index creates a separate structure from the table data, storing pointers to
the actual rows.
Syntax:

Example:

Key Points:
Multiple Non-Clustered Indexes can be created on a table.
Improves search performance.
Does not affect the physical order of data.
Stores pointers to the actual data.

44. Difference between Clustered and Non-Clustered Index

View Table

Virtual table. Physical table.

Does not store data physically. Stores data physically.

Based on SQL queries. Contains raw data.

Provides data security by restricting
access to certain columns.

No data restriction unless applied.

Automatically updates when base table
data changes.

Needs manual updates.

Created by: Vinay Kumar Panika

45. What is View in SQL?
A View is a virtual table based on the result of a SQL query.
Syntax:

Example:

Key Points:
Does not store data physically.
Simplifies complex queries.
Provides data security.
Can be used like a table in SELECT queries.

46. Difference between View and Table

Function Stored Procedure

Returns a single value or table. May or may not return a value.

Can be used in SELECT statements. Cannot be used in SELECT statements.

Allows only input parameters. Allows input and output parameters.

Cannot modify database state.
Can modify database state (INSERT,

UPDATE, DELETE).

Always returns a value. Does not always return a value.

Key Points:
Improves code reusability.
Increases performance.
Supports input and output parameters.
Provides security by hiding SQL code.

Created by: Vinay Kumar Panika

47. What is Stored Procedure ?
A Stored Procedure is a group of predefined SQL statements stored in the database that can
be executed multiple times.

Syntax:

Example:

48. What is the difference between Function and Stored
Procedure?

Key Points:
Automatically executes on INSERT, UPDATE, or DELETE.
Used for data validation and logging.
Cannot be called manually.
Improves data integrity.

Created by: Vinay Kumar Panika

49. What is Trigger in SQL?
A Trigger is an automatic action executed when a specified event occurs in a table.
Syntax:

Example:

50. What is Cursor in SQL?
A Cursor is a database object used to retrieve, manipulate, and navigate row-by-row through
the result set.
Syntax:

Created by: Vinay Kumar Panika

Key Points:
Used to process row-by-row results.
Slower than set-based operations.
Helps in complex data manipulation.
Not recommended for large datasets.

Example:

Property Description

A - Atomicity
Transaction should be all or nothing. If one part of the transaction
fails, the entire transaction fails, and the database remains unchanged.

C - Consistency
The database must be in a consistent state before and after the
transaction. It ensures that data remains correct and valid.

I - Isolation
Transactions should be executed independently, without interfering
with each other.

D - Durability
Once a transaction is committed, the changes must be permanent in the
database, even if the system crashes.

Created by: Vinay Kumar Panika

Advanced Level
51. What is the ACID Property in SQL?

The ACID properties in SQL define the key principles to ensure that database transactions
are processed reliably without affecting data integrity.
ACID Stands for:

Example:

Explanation:
Atomicity: If one of the two queries fails, both updates will be rolled back.1.
Consistency: The total amount in both accounts will remain the same.2.
Isolation: If another transaction is trying to access the same account, it will
wait until this transaction completes.

3.

Durability: After COMMIT, changes will be saved permanently even in case
of a power failure.

4.

Property Description

Atomicity All operations must succeed or none will happen.

Consistency
The database must remain in a valid state before and after the
transaction.

Isolation Transactions execute independently without affecting each other.

Durability Once committed, changes are permanent even after system failure.

Command Description

BEGIN TRANSACTION Starts a new transaction.

COMMIT Saves the changes permanently.

ROLLBACK Undo changes if any error occurs.

SAVEPOINT Sets a point to roll back to partially.

Created by: Vinay Kumar Panika
52. What is a Transaction in SQL?
A Transaction in SQL is a group of SQL operations that are executed as a single unit to
perform a specific task on the database.
It follows ACID Properties to maintain data integrity.

Key ACID Properties:

Transaction Commands:

Example:

COMMIT ROLLBACK

Saves the changes made by the transaction
permanently into the database.

Undo all changes made by the transaction.

Once executed, changes cannot be undone. Restores the database to its previous state.

Syntax: COMMIT; Syntax: ROLLBACK;

Used when all operations are successful.
Used when any error occurs during the

transaction.

Improves data durability. Helps to maintain data consistency.

Created by: Vinay Kumar Panika

Transactions in SQL

53. What is the difference between COMMIT and ROLLBACK?

Example:

IN EXISTS

Compares values from the main query with a
list of values.

Checks if subquery returns any rows.

Works with static values or subqueries. Only works with subqueries.

Slower with large datasets. Faster for large datasets.

Returns all matching rows.
Stops checking after finding the first

match.

Created by: Vinay Kumar Panika

Key Points:
Allows setting multiple points in a transaction.
Helps in partial rollback.
Improves error handling.
Used with ROLLBACK.

54. What is Savepoint in SQL?
Savepoint in SQL is used to temporarily save a transaction at a specific point, allowing you
to rollback only part of the transaction without affecting the entire transaction.

Syntax:

Explanation:
The first update will be saved.
The second update will be rolled back.
Remaining changes will be committed.

55. What is the difference between IN and EXISTS?

DELETE TRUNCATE

Removes specific rows based on a
condition using the WHERE clause.

Removes all rows from the table without
any condition.

Can be rolled back using ROLLBACK if
inside a transaction.

Cannot be rolled back once executed.

Slower because it logs each row deletion.
Faster because it does not log individual

row deletions.

Maintains table structure and identity
column values.

Resets identity column values to the initial
seed.

Index Fragmentation occurs when the logical order of index pages in the database does not
match the physical order of data on disk, making data retrieval slower.

Created by: Vinay Kumar Panika

56. What is the difference between DELETE and TRUNCATE?

Conclusion:
Index fragmentation slows down query performance and should be fixed regularly to
maintain database efficiency.

57. What is Index Fragmentation?

Types of Index Fragmentation:
Internal Fragmentation – Unused space inside index pages due to data
deletion or updates.

1.

External Fragmentation – Index pages are stored in non-sequential order,
causing slower data access.

2.

How to Check Index Fragmentation in MySQL:

How to Fix Index Fragmentation:
Use OPTIMIZE TABLE to reorganize index pages.

RANK() DENSE_RANK()

Assigns a unique rank to each row,
but skips the next rank if there are

duplicate values.

Assigns a unique rank to each row
without skipping ranks if there are

duplicate values.

Gaps are created in ranking sequence. No gaps in ranking sequence.

Slower in performance compared to
DENSE_RANK().

Faster than RANK() because it doesn't
skip ranks.

UNION JOIN

Combines result sets vertically (rows) from two
or more tables.

Combines result sets horizontally (columns) based
on common columns.

Removes duplicates by default (UNION), or
includes duplicates with UNION ALL.

Does not remove duplicates.

Tables should have the same number of
columns and data types.

Tables can have different numbers of columns.

Used when tables have similar data.
Used when tables have related data through a

common column.

Created by: Vinay Kumar Panika
58. What is the difference between RANK() and
DENSE_RANK()?

59. How to fetch common records from two tables?
To fetch common records from two tables, you can use the INNER JOIN clause in SQL.
Syntax:

60. What is the difference between UNION and JOIN?

Conclusion:
Pivot Tables help to summarize large datasets and present them in a structured format.

Created by: Vinay Kumar Panika
61. What is Pivot Table in SQL?
A Pivot Table in SQL is used to transform row data into column data to provide a summary
report of the dataset.
It is commonly used to perform data aggregation and present data in a more readable
format.

Key Points:
Converts rows into columns.
Used to generate summary reports.
Helps in data analysis.
Commonly used with aggregate functions like SUM(), AVG(), COUNT(), etc.

Example: Pivot Table Query

Key Points:
Column Names: Most databases are not case-sensitive (MySQL, SQL Server).
Table Names: Case sensitivity depends on the database and operating system.
String Values: By default, MySQL is case-insensitive for string comparisons.

62. What is Case Sensitivity in SQL?
Case Sensitivity in SQL refers to whether the database treats uppercase and lowercase letters
as different or same when performing queries.

Example in MySQL:

EmpID Name

101 Vinay

102 VINAY

Created by: Vinay Kumar Panika
Output:

How to Make MySQL Case-Sensitive:

This query will only return exact case-sensitive matches.
Conclusion:

Case Insensitivity is default in MySQL for string comparisons.
Use the BINARY keyword to perform case-sensitive searches.

Explanation:
ORDER BY Salary DESC → Sorts the salaries in descending order.
OFFSET 2 → Skips the top 2 salaries.
LIMIT 1 → Selects the next salary as the 3rd highest.

63. How to find the Nth Highest Salary?
To find the Nth Highest Salary in SQL, you can use the LIMIT with OFFSET method or
Subquery with ORDER BY.

Method 1: Using LIMIT with OFFSET (MySQL)

Example: Example (3rd Highest Salary):

Created by: Vinay Kumar Panika
Method 2: Using Subquery with LIMIT

Conclusion:
Use LIMIT with OFFSET for faster results in MySQL.
This method is commonly asked in interviews.
Always use DISTINCT to remove duplicate salaries.

Explanation:
DISTINCT → Removes duplicate salaries.
ORDER BY Salary DESC → Sorts salaries in descending order.
LIMIT 3 → Fetches the top 3 salaries.

64. How to get First 3 Maximum Salaries?
To fetch the First 3 Maximum Salaries from a table, you can use the DISTINCT, ORDER
BY, and LIMIT clauses.
Method : Using LIMIT (MySQL)

Comman
d Purpose Can

Rollback Speed Structure
Affected

Condition
-Based

DROP
Deletes the

entire table with
its structure

No Fastest
Yes (Removes

table
structure)

No

DELETE

Removes
specific rows

based on
condition

Yes (if
within

Transaction
)

Slow No
Yes (With
WHERE
Clause)

TRUNCAT
E

Removes all
rows from the

table
No Fast

No (Keeps
structure) No

Conclusion:
Use DELETE for removing specific rows with conditions.
Use TRUNCATE for removing all rows quickly without rollback.
Use DROP to delete both data and table structure completely.

Created by: Vinay Kumar Panika

65. What is the difference between Drop, Delete, and
Truncate?

66. How to calculate Age from Date of Birth in SQL?
You can calculate the Age from the Date of Birth using the DATEDIFF() or YEAR()
functions depending on the database.
Method 1: Using DATEDIFF() (MySQL)

Explanation:
CURDATE() → Returns the current date.
DATEDIFF() → Calculates the difference between the current date and date
of birth in days.
FLOOR() → Converts the result into whole years.

EmpID Name ManagerID

101 Vinay NULL

102 Awadhesh 101

103 Nevendra 102

Created by: Vinay Kumar Panika

Conclusion:
Use DATEDIFF() for accurate age calculation.
Use YEAR() for simple year-based age calculation.

Method 2: Using YEAR() (MySQL)

Explanation:
This method calculates the difference between the current year and the birth year.

67. What is Recursive Query in SQL?
A Recursive Query in SQL is a query that refers to itself to perform repetitive operations
until a specific condition is met. It is commonly used to process hierarchical data such as
employee-manager relationships or organizational structures.

Key Points:
Used to handle hierarchical data.
Implemented using Common Table Expressions (CTE).
The recursion continues until the termination condition is satisfied.

Example:
Employee Table:

Recursive Query:

Temporary Table CTE (Common Table Expression)

Stores data physically in temporary
memory.

Stores data logically without physical storage.

Needs to be explicitly created and dropped.
Automatically disappears after query

execution.

Can be used multiple times within a session. Can be used only once in the same query.

Supports Indexing and DDL operations.
Does not support Indexing or DDL

operations.

Slower for small datasets. Faster for small datasets.

Conclusion:
Use Temporary Tables when data needs to be reused multiple times.
Use CTE for short-term data manipulation and improved readability.

Created by: Vinay Kumar Panika

68. What is the difference between Temporary Table and CTE?

69. How to find Odd and Even records in SQL?
You can find Odd and Even records in SQL using the MOD() or
ROW_NUMBER() functions.
Method 1: Using MOD() Function (MySQL)

Explanation:
MOD(EmpID, 2) → Returns the remainder when EmpID is divided by 2.
If the remainder is 0, the record is Even.
If the remainder is 1, the record is Odd.

Method 2: Using ROW_NUMBER() (SQL Server, PostgreSQL)

Created by: Vinay Kumar Panika

Insert JSON Data:

70. What is JSON in SQL?
JSON (JavaScript Object Notation) in SQL is used to store, retrieve, and manipulate data in
a structured, text-based format within relational databases.

Key Points:
Stores data in key-value pairs.
Lightweight and easy to read.
Commonly used for semi-structured data.
Supported in MySQL, SQL Server, and PostgreSQL.

MySQL Example:
Create Table with JSON Column:

Conclusion:
Use MOD() for databases like MySQL.
Use ROW_NUMBER() for databases that support Window Functions.

Retrieve JSON Data:

Conclusion:
JSON helps to handle semi-structured data within relational databases without the need for
separate NoSQL databases.

71. What is XML in SQL?
XML (Extensible Markup Language) in SQL is used to store, retrieve, and manipulate
structured data in a text-based format within relational databases.
Key Points:

Stores data in hierarchical format using tags.
Commonly used for data exchange between applications.
Supported in SQL Server, MySQL, and Oracle.
Helps to store semi-structured data.

Created by: Vinay Kumar PanikaMySQL Example:
Create Table with XML Data:

Insert XML Data:

Retrieve XML Data:

Conclusion:
XML is used to store and transfer hierarchical data in relational databases, making it easier
to exchange data between applications.

72. How to handle NULL values in SQL?
NULL represents missing or unknown data in SQL.

Methods to Handle NULL Values:

IS NULL – To check if a column contains NULL.1.

 2. IS NOT NULL – To check if a column does not contain NULL.

 3. COALESCE() – Replaces NULL with a default value.

 4. IFNULL() (MySQL) – Replaces NULL with a specified value.

 5. NULLIF() – Returns NULL if two expressions are equal.

Conclusion:
Use COALESCE() or IFNULL() to replace NULL values and ensure data consistency in
queries.

Created by: Vinay Kumar Panika

73. What is Dynamic SQL?
Dynamic SQL is a method of constructing and executing SQL statements at runtime instead
of writing static queries.

Example (MySQL):

Key Points:
Allows flexible query creation based on user input or conditions.
Used for complex queries with varying conditions.
Helps in Parameterized Queries and stored procedures.
Increases security risks if not handled properly.

Syntax:

Conclusion:
Dynamic SQL provides flexibility in query execution but should always be used with
parameterized queries to prevent SQL injection attacks.

74. How to calculate Percentage in SQL?

Example: Query to Calculate Percentage of Employees in Each Department:

You can calculate Percentage in SQL using arithmetic expressions and aggregate functions.

EmpID Name Salary ManagerID

101 Vinay 50000 NULL

102 Nevendra 40000 101

103 Awadhesh 60000 101

104 Rituraj 45000 102

Employee EmployeeSalary Manager ManagerSalary

Awadhesh 60000 Vinay 50000

Created by: Vinay Kumar Panika
75. How to find the Employees who earn more than their
Manager?
To find employees who earn more than their manager, you need to join the Employee table
with itself using Self Join.
Example Table:
Employee Table

Query:

Output:

Conclusion: Use Self Join with a condition to compare employee salaries against their
managers' salaries. This query helps in hierarchical data analysis.

Created by: Vinay Kumar Panika

Real-Time Scenarios
76. How to find Duplicate Emails in the Employee Table?
To find duplicate emails in SQL, you can use the GROUP BY clause with the HAVING
condition.
Syntax:

Explanation:
GROUP BY groups the records based on the Email column.
COUNT(Email) counts how many times each email appears.
HAVING COUNT(Email) > 1 filters only those emails that have more than one
occurrence.

77. How to get the Highest Salary in each Department?
You can find the Highest Salary in Each Department using the GROUP BY clause with the
MAX() aggregate function.
Syntax:

78. How to find Employees joined in the last 3 months?
To find employees who joined in the last 3 months, you can use the DATE_ADD() or
DATEDIFF() function along with the WHERE clause.
Method 1: Using DATEDIFF() (MySQL)

Method 2: Using DATE_ADD() (MySQL)

Created by: Vinay Kumar Panika

79. How to Display the First 5 Records in SQL?
You can display the First 5 Records using the LIMIT or TOP clause depending on the
database.
Method 1: Using LIMIT (MySQL)

Method 2: Using TOP (SQL Server)

80. How to find the Number of Employees in each Department?
You can find the Number of Employees in each department using the COUNT() function
with the GROUP BY clause.
Syntax:

81. How to find the Last 3 Records in SQL?
To fetch the Last 3 Records in SQL, you can use the ORDER BY clause along with LIMIT.

Method 1: Using ORDER BY with LIMIT (MySQL)

Method 2: Using ROW_NUMBER() (SQL Server, PostgreSQL)

Created by: Vinay Kumar Panika
82. How to find Employees without Managers?
To find employees without managers, you need to filter records where the ManagerID
column is NULL or does not exist in the table.
Method 1: Using IS NULL (MySQL, SQL Server, Oracle)

Method 2: Using LEFT JOIN (MySQL, SQL Server, PostgreSQL)

83. How to find the First Name starting with 'A'?
You can find employee names starting with the letter 'A' using the LIKE operator.
Syntax:

Explanation:
LIKE 'A%' → Finds names that start with 'A'.
% → Represents any number of characters after 'A'.

84. How to fetch Alternate Rows from a table?
You can fetch Alternate Rows using the MOD() or ROW_NUMBER() functions based on
row position.

Method 1: Using MOD() (MySQL)
Fetch Even Rows:

Fetch Odd Rows:

Created by: Vinay Kumar Panika
Method 2: Using ROW_NUMBER() (SQL Server, PostgreSQL)
Fetch Odd Rows:

Fetch Even Rows:

85. How to swap two columns in SQL?
You can swap the values of two columns using the UPDATE statement with the
TEMPORARY variable technique.
Syntax:

Correct Way Using Temporary Variable:

86. How to display the Duplicate Records with their Count?
To display duplicate records along with their occurrence count, use the GROUP BY clause
with the HAVING clause.
Syntax:

Conclusion:
Use ORDER BY with LIMIT for simple queries.
Use Subqueries or ALL for advanced scenarios.
This method works in all RDBMS.

Created by: Vinay Kumar Panika

87. How to find the Highest Salary without using MAX()?
You can find the Highest Salary without using the MAX() function by using the ORDER
BY clause with the LIMIT or TOP keyword.

Method 1: Using ORDER BY with LIMIT (MySQL)

Method 2: Using Subquery (MySQL, SQL Server)

Method 3: Using NOT IN (MySQL, SQL Server)

88. How to fetch common records from two tables without
JOIN?
You can fetch common records from two tables without using JOIN by using the IN or
INTERSECT operators.

Method 1: Using IN (MySQL, SQL Server)

Method 2: Using INTERSECT (SQL Server, PostgreSQL)

Created by: Vinay Kumar Panika

89. How to delete Duplicate Records from a table?
You can delete duplicate records using CTE, ROW_NUMBER(), or GROUP BY methods.

Method 1: Using ROW_NUMBER() (SQL Server, PostgreSQL)

Method 2: Using GROUP BY with MIN() (MySQL)

Method 3: Using DISTINCT INTO Temporary Table (MySQL)

Conclusion:
Use ROW_NUMBER() for advanced databases.
Use GROUP BY for simple queries.
Always backup data before deleting duplicates.

Created by: Vinay Kumar Panika

90. How to find the Department with the highest Employee
Count?
You can find the Department with the Highest Employee Count using the GROUP BY
clause along with the ORDER BY and LIMIT clauses.

Method 1: Using GROUP BY with ORDER BY (MySQL)

Method 2: Using Subquery (MySQL, SQL Server)

Conclusion:
Use GROUP BY with ORDER BY for a simple approach.
Use Subqueries for better performance with large datasets.

 3. Use Joins Efficiently: Use INNER JOIN instead of OUTER JOIN
whenever possible.
 4. Use EXISTS Instead of IN: EXISTS performs better with large datasets.

Created by: Vinay Kumar Panika

91. How to Optimize SQL Queries?
Optimizing SQL queries improves performance and execution speed while handling large
datasets.
Best Practices to Optimize SQL Queries:

Optimization Techniques

Use Indexes: Create indexes on columns used in WHERE, JOIN, and
ORDER BY clauses.

1.

 2. Avoid SELECT: Select only required columns instead of using
SELECT

 5. Use LIMIT or TOP: Fetch only required rows using LIMIT or TOP.

 6. Avoid Functions in WHERE Clause:
Instead of:

Use:

 7. Optimize Subqueries: Use JOIN instead of subqueries whenever possible.
 8. Partition Large Tables: Split large tables into smaller partitions.
 9.Use CTEs and Temp Tables: Store temporary results for better performance.
 10. Analyze Execution Plan:Use EXPLAIN or Query Plan to check how queries
are executed.

Created by: Vinay Kumar Panika

92. What is Query Execution Plan?
A Query Execution Plan is a detailed roadmap used by the database engine to execute
SQL queries efficiently.

Key Points:
Shows how the database will retrieve data.
Helps to analyze performance and optimize queries.
Displays the order of execution for each query operation like joins, scans, and
sorting.
Provides information about indexes, table scans, and filtering methods.

How to View Execution Plan:

Why Use Execution Plan?
Identify performance bottlenecks.
Check if the query is using Indexes or Table Scans.
Understand how Joins and Filters are applied.

MySQL:

SQL Server:

 3. Use Joins Efficiently: Prefer INNER JOIN over OUTER JOIN when
possible.
 4. Use WHERE Instead of HAVING: Filter rows early using WHERE.

Created by: Vinay Kumar Panika
93. How to Improve Query Performance?
Improving Query Performance ensures faster data retrieval and better database efficiency,
especially for large datasets.
Best Practices to Improve Query Performance:

Use Indexes: Create indexes on columns used in WHERE, JOIN, and
ORDER BY clauses.

1.

 2. Avoid SELECT: Select only required columns instead of using
SELECT

 5. Limit Results: Fetch only the required number of rows.

 6. Use EXISTS Instead of IN: EXISTS performs better with subqueries.

 7. Avoid Functions in WHERE Clause:
Instead of:

Use:

 8. Partition Large Tables: Split large tables into smaller partitions.
 9. Use Temporary Tables or CTEs: Store temporary results for better
performance.
10. Analyze Execution Plans: Use EXPLAIN or SHOWPLAN to understand
query execution.

Created by: Vinay Kumar Panika

94. What is Indexing?
Indexing in SQL is a technique used to improve the speed of data retrieval from a
database by creating a lookup table for faster access.
Key Points:

Works like a book index to find data quickly.
Reduces the time required for SELECT queries.
Automatically updated when data is inserted, updated, or deleted.
Indexes are created on columns frequently used in WHERE, JOIN, and
ORDER BY clauses.

Types of Indexes:
Primary Index – Automatically created on Primary Key columns.1.
Unique Index – Ensures that values in a column are unique.2.
Clustered Index – Sorts data rows physically based on key values (Only
one per table).

3.

Non-Clustered Index – Stores pointers to data rows (Multiple indexes
allowed).

4.

Conclusion: Indexing improves query performance by quickly locating data
but may increase the time for INSERT, UPDATE, and DELETE
operations.

95. What is Table Partitioning?
Table Partitioning is a technique used to divide large tables into smaller, more
manageable pieces without changing the table structure.

Key Points:
Improves query performance on large datasets.
Simplifies data management.
Helps in faster data retrieval.
Each partition is stored separately.
Data can be partitioned by range, list, hash, or composite methods.

Types of Partitioning:
Range Partitioning – Divides data based on value ranges.1.
List Partitioning – Divides data based on specific column values.2.
Hash Partitioning – Distributes data evenly using a hash function.3.
Composite Partitioning – Combination of Range and Hash partitioning.4.

Conclusion: Table Partitioning improves performance and data
management by splitting large datasets into smaller, more manageable
sections.

Created by: Vinay Kumar Panika

Syntax (MySQL Range Partitioning):

Example Query:

96. How to Avoid Deadlocks in SQL?
A Deadlock occurs when two or more transactions block each other by
holding locks on resources that the other transactions need.
Ways to Avoid Deadlocks:

Access Tables in the Same Order:1.
Always access tables in a consistent sequence across transactions.

Minimize Lock Time:2.
Keep transactions short and fast to reduce lock holding time.

Use Lower Isolation Levels:3.
Use READ COMMITTED instead of SERIALIZABLE isolation
level if possible.

Avoid User Interaction Inside Transactions:4.
Do not wait for user input during a transaction.

Use NOLOCK or Read Uncommitted:5.
Allow non-blocking reads for read-only operations.

Conclusion:
Follow consistent table access patterns, minimize lock times, and use
proper indexing to avoid deadlocks in SQL transactions.

Created by: Vinay Kumar Panika

 6. Proper Indexing:
Use Indexes to minimize the number of rows locked.

 7. Break Large Transactions:
Split large transactions into smaller batches.

Example:
Without Deadlock Prevention:

With Deadlock Prevention:

97. What is the use of EXISTS in SQL?
EXISTS in SQL is used to check whether a subquery returns any rows. It returns:

TRUE if the subquery returns at least one row.
FALSE if the subquery returns no rows.

Syntax:

Conclusion: EXISTS is faster than IN for large datasets and is commonly
used in subqueries to check data existence.

Stored Procedure Function

Can return multiple values. Returns only one value (scalar or table).

Can perform DML operations like
INSERT, UPDATE, DELETE.

Cannot perform DML operations.

Supports input and output parameters. Only supports input parameters.

Can call Functions inside it. Cannot call Stored Procedures inside it.

Used for business logic and complex
operations.

Used for calculations and returning values.

Created by: Vinay Kumar Panika

Query Optimization is the process of improving the efficiency and performance of
SQL queries to retrieve data faster while using minimal system resources.

Key Points:
Helps in reducing query execution time.
Improves database performance.
Minimizes CPU usage, memory usage, and I/O operations.
Automatically performed by the Query Optimizer in most RDBMS.

Techniques for Query Optimization:
Use Indexes to speed up searches.1.
Avoid SELECT and select only necessary columns.2.
Use JOINs instead of subqueries when possible.3.
Use EXISTS instead of IN for large datasets.4.
Avoid Functions in WHERE clause.5.
Use LIMIT or TOP to fetch only required rows.6.
Analyze the Execution Plan using tools like EXPLAIN.7.

Conclusion:
Query Optimization improves execution speed, reduces resource usage, and
enhances overall database performance.

98. What is Query Optimization?

99. What is the Difference Between Stored Procedure and
Function in SQL?

OLTP (Online Transaction
Processing)

OLAP (Online Analytical
Processing)

Used for day-to-day transactional
operations.

Used for data analysis and reporting.

Focuses on data consistency and speed. Focuses on data aggregation and analysis.

Stores detailed transactional data. Stores historical and summarized data.

Supports INSERT, UPDATE, DELETE
operations.

Supports SELECT operations with complex
queries.

Small amounts of data processed per
transaction.

Large amounts of data processed at once.

Example: Banking systems, E-commerce
websites.

Example: Data Warehouses, Business
Intelligence Tools.

Created by: Vinay Kumar Panika

100. What is Query Optimization?

