BIJU PATNAIK UNIVERSITY OF TECHNOLOGY,
ODISHA

Lecture Notes
On

DBMS

Prepared by,
Dr. Subhendu Kumar Rath,
BPUT, Odisha.

Prepared by: Dr. Subhendu Kumar Rath

DBMS: Basic Concepts

Introduction

Disadvantages of file oriented approach
Database

Why Database

Database Management System(DBMS)
Function of DBMS

Advantages of DBMS and disadvantage of DBMS
Database Basics

. Three level architecture of DBMS

10. Database users

11. Database language

12. Database structure

©ooNOA~LDE

Introduction:

In computerized information system data is the basic resource of the organization.
So, proper organization and management for data is required fro organization to run
smoothly. Database management system deals the knowledge of how data stored and
managed on a computerized information system. In any organization, it requires accurate
and reliable data for better decision making, ensuring privacy of data and controlling data
efficiently.
The examples include deposit and/or withdrawal from a bank,hotelairline or railway
reservation, purchase items from supermarkets in all cases, a database is accessed.

What is data:

Data is the known facts or figures that have implicit meaning. It can also be defined as it
is the representation of facts ,concepts or instruction in a formal manner, which is suitable
for understanding and processing. Data can be represented in alphabets(A-Z, a-z),in
digits(0-9) and using special characters(+,-.#,$, etc)

e.g: 25, “ajit” etc.

Information:

Information is the processed data on which decisions and actions are based. Information
can be defined as the organized and classified data to provide meaningful values.

Eg: “The age of Ravi is 25”

File:
File is a collection of related data stored in secondary memory.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

File Oriented approach:
The traditional file oriented approach to information processing has for each application a
separate master file and its own set of personal file. In file oriented approach the program
dependent on the files and files become dependent on the files and files become
dependents upon the programs
Disadvantages of file oriented approach:
1) Data redundancy and inconsistency:
The same information may be written in several files. This redundancy leads to
higher storage and access cost. It may lead data inconsistency that is the various
copies of the same data may longer agree for example a changed customer address
may be reflected in single file but not else where in the system.

2) Difficulty in accessing data :
The conventional file processing system do not allow data to retrieved in a
convenient and efficient manner according to user choice.

3) Data isolation :
Because data are scattered in various file and files may be in different formats
with new application programs to retrieve the appropriate data is difficult.

4) Integrity Problems:
Developers enforce data validation in the system by adding appropriate code in
the various application program. How ever when new constraints are added, it is
difficult to change the programs to enforce them.

5) Atomicity:

It is difficult to ensure atomicity in a file processing system when transaction
failure occurs due to power failure, networking problems etc.
(atomicity: either all operations of the transaction are reflected properly in the
database or non are)
6) Concurrent access:
In the file processing system it is not possible to access a same file for
transaction at same time
7) Security problems:
There is no security provided in file processing system to secure the data from
unauthorized user access.

Database:

A database is organized collection of related data of an organization stored in
formatted way which is shared by multiple users.

The main feature of data in a database are:

Prepared by: Dr. Subhendu Kumar Rath

It must be well organized
it is related
It is accessible in a logical order without any difficulty
4. ltis stored only once
for example:
consider the roll no, name, address of a student stored in a student file. It is collection of
related data with an implicit meaning.
Data in the database may be persistent, integrated and shared.

wn e

Persistent:

If data is removed from database due to some explicit request from user to remove.
Integrated:

A database can be a collection of data from different files and when any redundancy
among those files are removed from database is said to be integrated data.

Sharing Data:

The data stored in the database can be shared by multiple users simultaneously with out
affecting the correctness of data.

Why Database:

In order to overcome the limitation of a file system, a new approach was required.
Hence a database approach emerged. A database is a persistent collection of logically
related data. The initial attempts were to provide a centralized collection of data. A
database has a self describing nature. It contains not only the data sharing and integration
of data of an organization in a single database.

A small database can be handled manually but for a large database and having
multiple users it is difficult to maintain it, In that case a computerized database is useful.
The advantages of database system over traditional, paper based methods of record
keeping are:

e compactness:
No need for large amount of paper files
e speed:
The machine can retrieve and modify the data more faster way then human being
e Less drudgery: Much of the maintenance of files by hand is eliminated
e Accuracy: Accurate,up-to-date information is fetched as per requirement of the
user at any time.

Database Management System (DBMS):
A database management system consists of collection of related data and refers to a set of
programs for defining, creation, maintenance and manipulation of a database.

Function of DBMS:

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

1. Defining database schema: it must give facility for defining the database
structure also specifies access rights to authorized users.

2. Manipulation of the database: The dbms must have functions like insertion of
record into database updation of data, deletion of data, retrieval of data

3. Sharing of database: The DBMS must share data items for multiple users by
maintaining consistency of data.

4. Protection of database: It must protect the database against unauthorized users.

5. Database recovery: If for any reason the system fails DBMS must facilitate data
base recovery.

Advantages of dbms:

Reduction of redundancies:

Centralized control of data by the DBA avoids unnecessary duplication of data and
effectively reduces the total amount of data storage required avoiding duplication in the
elimination of the inconsistencies that tend to be present in redundant data files.

Sharing of data:

A database allows the sharing of data under its control by any number of application
programs or users.

Data Integrity:

Data integrity means that the data contained in the database is both accurate and
consistent. Therefore data values being entered for storage could be checked to ensure
that they fall with in a specified range and are of the correct format.

Data Security:

The DBA who has the ultimate responsibility for the data in the dbms can ensure that

proper access procedures are followed including proper authentication schemas for access
to the DBS and additional check before permitting access to sensitive data.

Conflict resolution:

DBA resolve the conflict on requirements of various user and applications. The DBA
chooses the best file structure and access method to get optional performance for the
application.

Data Independence:

Prepared by: Dr. Subhendu Kumar Rath

Data independence is usually considered from two points of views; physically data
independence and logical data independence.

Physical data Independence allows changes in the physical storage devices or
organization of the files to be made without requiring changes in the conceptual view or
any of the external views and hence in the application programs using the data base.
Logical data independence indicates that the conceptual schema can be changed without
affecting the existing external schema or any application program.

Disadvantage of DBMS:

1. DBMS software and hardware (networking installation) cost is high

2. The processing overhead by the dbms for implementation of security, integrity
and sharing of the data.

3. centralized database control

4, Setup of the database system requires more knowledge, money, skills, and time.

5. The complexity of the database may result in poor performance.

Database Basics:

Data item:

The data item is also called as field in data processing and is the smallest unit of data
that has meaning to its users.

Eg: “e101”,”sumit”

Entities and attributes:

An entity is a thing or object in the real world that is distinguishable from all other
objects

Eg:

Bank,employee,student

Attributes are properties are properties of an entity.

Eg:

Empcode,ename,rolno,name

Logical data and physical data :

Logical data are the data for the table created by user in primary memory.
Physical data refers to the data stored in the secondary memory.

Schema and sub-schema

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

A schema is a logical data base description and is drawn as a chart of
the types of data that are used . It gives the names of the entities and attributes and
specify the relationships between them.

A database schema includes such information as :

» Characteristics of data items such as entities and attributes .

» Logical structures and relationships among these data items .

» Format for storage representation.

> Integrity parameters such as physical authorization and back up policies.

A subschema is derived schema derived from existing schema as per the user
requirement. There may be more then one subschema create for a single conceptual
schema.

Three level architecture of DBMS :

External level View View View
userl User2 [T~~~ 7=7=77==7777 User n

Conceptual

level Mapping supplied by DBMS

Conceptual view

Mapping supplied by DBMS/OS

Internal level

A database management system that provides three level of data is said to follow three-
level architecture .

e External level

e Conceptual level

e Internal level
External level :

Prepared by: Dr. Subhendu Kumar Rath

The external level is at the highest level of database abstraction . At this level, there will
be many views define for different users requirement. A view will describe only a subset
of the database. Any number of user views may exist for a given global or subschema.

for example , each student has different view of the time table. the view of a student of
Btech (CSE) is different from the view of the student of Btech(ECE).Thus this level of
abstraction is concerned with different categories of users.

Each external view is described by means of a schema called schema or
schema.

Conceptual level :

At this level of database abstraction all the database entities and the
relationships among them are included . One conceptual view represents the entire
database . This conceptual view is defined by the conceptual schema.

The conceptual schema hides the details of physical storage structures and concentrate on
describing entities , data types, relationships, user operations and constraints.

It describes all the records and relationships included in the conceptual view
. There is only one conceptual schema per database . It includes feature that specify the
checks to relation data consistency and integrity.

Internal level :
It is the lowest level of abstraction closest to the physical storage method used .
It indicates how the data will be stored and describes the data structures and access
methods to be used by the database . The internal view is expressed by internal schema.
The following aspects are considered at this level:
1. Storage allocation e.g: B-tree,hashing
2. access paths eg. specification of primary and secondary keys,indexes etc
3. Miscellaneous eg. Data compression and encryption techniques,optimization of
the internal structures.

Database users :

Naive users :

Users who need not be aware of the presence of the database system or any other
system supporting their usage are considered naive users . A user of an automatic teller
machine falls on this category.

Online users :

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

These are users who may communicate with the database directly via an online
terminal or indirectly via a user interface and application program. These users are
aware of the database system and also know the data manipulation language system.

Application programmers :

Professional programmers who are responsible for developing application programs
or user interfaces utilized by the naive and online user falls into this category.

Database Administration :

A person who has central control over the system is called database administrator .

The function of DBA are :

1.

Nogabkowd

Database language :

creation and modification of conceptual Schema
definition

Implementation of storage structure and access method.
schema and physical organization modifications .
granting of authorization for data access.

Integrity constraints specification.

Execute immediate recovery procedure in case of failures
ensure physical security to database

1) Data definition language(DDL) :

DDL is used to define database objects .The conceptual schema is
specified by a set of definitions expressed by this language. It also give some
details about how to implement this schema in the physical devices used to store
the data. This definition includes all the entity sets and their associated attributes
and their relation ships. The result of DDL statements will be a set of tables that
are stored in special file called data dictionary.

2) Data manipulation language(DML) :
A DML is a language that enables users to access or manipulate data stored in
the database. Data manipulation involves retrieval of data from the database,
insertion of new data into the database and deletion of data or modification of

existing data.

There are basically two types of DML:
e procedural: Which requires a user to specify what data is needed and
how to get it.
e non-rocedural: which requires a user to specify what data is needed
with out specifying how to get it.

Prepared by: Dr. Subhendu Kumar Rath

3) Data control language(DCL):
This language enables user to grant authorization and canceling
authorization of database objects.

Elements of DBMS:

DML pre-compiler:

It converts DML statement embedded in an application program to normal procedure
calls in the host language. The pre-complier must interact with the query processor in
order to generate the appropriate code.

DDL compiler:

The DDL compiler converts the data definition statements into a set of tables. These
tables contains information concerning the database and are in a form that can be used by
other components of the dbms.

File manager:

File manager manages the allocation of space on disk storage and the data structure used
to represent information stored on disk.

Database manager:

A database manager is a program module which provides the interface between the low
level data stored in the database and the application programs and queries submitted to
the system.

The responsibilities of database manager are:

1. Interaction with file manager: The data is stored on the disk using the file
system which is provided by operating system. The database manager translate
the the different DML statements into low-level file system commands. so The
database manager is responsible for the actual storing,retrieving and updating
of data in the database.

2. Integrity enforcement:The data values stored in the database must satisfy
certain constraints(eg: the age of a person can't be less then zero).These
constraints are specified by DBA. Data manager checks the constraints and if
it satisfies then it stores the data in the database.

3. Security enforcement:Data manager checks the security measures for
database from unauthorized users.
4, Backup and recovery:Database manager detects the failures occurs due to

different causes (like disk failure, power failure,deadlock,s/w error) and
restores the database to original state of the database.

5. Concurrency control:When several users access the same database file
simultaneously, there may be possibilities of data inconsistency. It is

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

responsible of database manager to control the problems occurs for concurrent
transactions.
query processor:
The query processor used to interpret to online user’s query and convert it into an
efficient series of operations in a form capable of being sent to the data manager for
execution. The query processor uses the data dictionary to find the details of data file
and using this information it create query plan/access plan to execute the query.
Data Dictionary:
Data dictionary is the table which contains the information about database objects. It
contains information like
1. external, conceptual and internal database description
2. description of entities , attributes as well as meaning of data elements
3. synonyms, authorization and security codes
4. database authorization
The data stored in the data dictionary is called meta data.

DBMS STRUCTURE:

Naive user Application On line user DBA

N nronramers

l A\ 4 \ 4
Application System calls Ddl compiler
programs

\ 4 v v \ 4
Application prog P _ Dml precomplier P | Query processor Ddl compiler
obj code « > < >

v

Database manager

File manaaer

DBMS

[Y

| Data dictionary

Q. List four significant differences between a file-processing system and a DBMS.

Answer: Some main differences between a database management system and a file-
processing system are:

« Both systems contain a collection of data and a set of programs which access that

data. A database management system coordinates both the physical and the logical

Prepared by: Dr. Subhendu Kumar Rath

access to the data, whereas a file-processing system coordinates only the physical
access.

* A database management system reduces the amount of data duplication by
ensuring that a physical piece of data is available to all programs authorized to
have access to it, where as data written by one program in a file-processing system
may not be readable by another program.

A database management system is designed to allow flexible access to data (i.e.,
queries), whereas a file-processing system is designed to allow predetermined
access to data (i.e., compiled programs).

« A database management system is designed to coordinate multiple users accessing
the same data at the same time. A file-processing system is usually designed to
allow one or more programs to access different data files at the same time. In a
file-processing system, a file can be accessed by two programs concurrently only
if both programs have read-only access to the file.

Q.Explain the difference between physical and logical data independence.

Answer:

* Physical data independence is the ability to modify the physical scheme without
making it necessary to rewrite application programs. Such modifications include
changing from unblocked to blocked record storage, or from sequential to random
access files.

« Logical data independence is the ability to modify the conceptual scheme without
making it necessary to rewrite application programs. Such a modification might
be adding a field to a record; an application program’s view hides this change
from the program.

Q. List five responsibilities of a database management system. For each
responsibility, explain the problems that would arise if the responsibility were not
discharged.
Answer: A general purpose database manager (DBM) has five responsibilities:
a. interaction with the file manager.
b. integrity enforcement.
c. security enforcement.
d. backup and recovery.
e. concurrency control.
If these responsibilities were not met by a given DBM (and the text points out that
sometimes a responsibility is omitted by design, such as concurrency control on a
single-user DBM for a micro computer) the following problems can occur,
respectively:

a. No DBM can do without this, if there is no file manager interaction then
nothing stored in the files can be retrieved.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Consistency constraints may not be satisfied, account balances could go
below the minimum allowed, employees could earn too much overtime
(e.g.,hours > 80) or, airline pilots may fly more hours than allowed by law.
Unauthorized users may access the database, or users authorized to access
part of the database may be able to access parts of the database for which
they lack authority. For example, a high school student could get access to
national defense secret codes, or employees could find out what their
supervisors earn.

Data could be lost permanently, rather than at least being available in a
consistent state that existed prior to a failure.

Consistency constraints may be violated despite proper integrity
enforcement in each transaction. For example, incorrect bank balances
might be reflected due to simultaneous withdrawals and deposits, and so
on.

Q. What are five main functions of a database administrator?

Answer: Five main functions of a database administrator are:

To create the scheme definition

To define the storage structure and access methods

To modify the scheme and/or physical organization when necessary
To grant authorization for data access

To specify integrity constraints

Q. List six major steps that you would take in setting up a database for a particular

enterprise.

Answer: Six major steps in setting up a database for a particular enterprise are:

Define the high level requirements of the enterprise (this step generates a
document known as the system requirements specification.)

Define a model containing all appropriate types of data and data
relationships.

Define the integrity constraints on the data.

Define the physical level.

For each known problem to be solved on a regular basis (e.g., tasks to be
carried out by clerks or Web users) define a user interface to carry out the
task, and write the necessary application programs to implement the user
interface.

Create/initialize the database.

EXERCISES:

1. What is database management system
2. What are the disadvantage of file processing system

Prepared by: Dr. Subhendu Kumar Rath

State advantage and disadvantage of database management system

What ate different types of database users

What is data dictionary and what are its contents

What are the function of DBA

What are the different database languages explain with example.

Explain the three layer architecture of DBMS.

Differentiate between physical data independence and logical data independence
10 Explain the function of data base manager

11. Explain meta data

©CONOUAW

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

CHAPTER-2

ER-MODEL

Data model:
The data model describes the structure of a database. It is a collection of conceptual tools
for describing data, data relationships and consistency constraints and various types of
data model such as

1. Object based logical model

2. Record based logical model

3. Physical model

Types of data model:

1. Object based logical model
a. ER-model
b. Functional model
c. Object oriented model
d. Semantic model

2. Record based logical model
a. Hierarchical database model
b. Network model
c. Relational model

3. Physical model

Entity Relationship Model

The entity-relationship data model perceives the real world as consisting of basic objects,
called entities and relationships among these objects. It was developed to facilitate data
base design by allowing specification of an enterprise schema which represents the
overall logical structure of a data base.
Main features of ER-MODEL.:
e Entity relationship model is a high level conceptual model
e It allows us to describe the data involved in a real world enterprise in terms of
objects and their relationships.
e Itis widely used to develop an initial design of a database
e |t provides a set of useful concepts that make it convenient for a developer to
move from a baseid set of information to a detailed and description of information
that can be easily implemented in a database system
e It describes data as a collection of entities, relationships and attributes.

Prepared by: Dr. Subhendu Kumar Rath

Basic concepts:

The E-R data model employs three basic notions : entity sets, relationship sets and
attributes.

Entity sets:

An entity is a “thing” or “object” in the real world that is distinguishable from all other
objects. For example, each person in an enterprise is an entity. An entity has a set
properties and the values for some set of properties may uniquely identify an entity.
BOOK is entity and its properties(calles as attributes) bookcode, booktitle, price etc .

An entity set is a set of entities of the same type that share the same properties, or
attributes. The set of all persons who are customers at a given bank, for example, can be
defined as the entity set customer.

Attributes:

An entity is represented by a set of attributes. Attributes are descriptive properties
possessed by each member of an entity set.

Customer is an entity and its attributes are customerid, custmername, custaddress etc.

An attribute as used in the E-R model , can be characterized by the following attribute

types.
a) Simple and composite attribute:

simple attributes are the attributes which can’t be divided into sub parts
eg: customerid,empno
composite attributes are the attributes which can be divided into subparts.
eg: name consisting of first name, middle name, last name
address consisting of city,pincode,state
b) single-valued and multi-valued attribute:
The attribute having unique value is single —valued attribute
eg: empno,customerid,regdno etc.
The attribute having more than one value is multi-valued attribute
eg: phone-no, dependent name, vehicle

C) Derived Attribute:

The values for this type of attribute can be derived from the values of existing
attributes
eg: age which can be derived from (currentdate-birthdate)

experience_in_year can be calculated as (currentdate-joindate)

d) NULL valued attribute:
The attribute value which is unknown to user is called NULL valued attribute.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Relationship sets:

A relationship is an association among several entities.

A relationship set is a set of relationships of the same type. Formally, it is a mathematical
relation on n>=2 entity sets. If E1,E2...En are entity sets, then a relation ship set R is a
subset of

{(el,e2,...en)lel€ El,e2 € E2...en € En}

where (el,e2,...en) is a relation ship.

customer loan

Consider the two entity sets customer and loan. We define the relationship set borrow to
denote the association between customers and the bank loans that the customers have.

Mapping Cardinalities:

Mapping cardinalities or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets, although they
can contribute to the description of relationship sets that involve more than two entity
sets.

For a binary relationship set R between entity sets A and B, the mapping cardinalities
must be one of the following:

one to one:

An entity in A is associated with at most one entity in B, and an entity in B is associated
with at most one entity in A.

Eg: relationship between college and principal
11 11
college principal

One to many:

An entity in A is associated with any number of entities in B. An entity in B is associated
with at the most one entity in A.

Eg: Relationship between department and faculty
11 M 1

Department Works Faculty

n

Prepared by: Dr. Subhendu Kumar Rath

Many to one:
An entity in A is associated with at most one entity in B. An entity in B is associated with
any number in A.

1771 M

Course Faculty

Many —to-many:
Entities in A and B are associated with any number of entities from each other.

Customer Account

More about entities and Relationship:
Recursive relationships:
When the same entity type participates more than once in a relationship type in different
roles, the relationship types are called recursive relationships.
Participation constraints:
The participation constraints specify whether the existence of any entity depends on its
being related to another entity via the relationship. There are two types of participation
constraints
Total :
.When all the entities from an entity set participate in a relationship type , is called total
participation. For example, the participation of the entity set student on the relationship
set must “opts’ is said to be total because every student enrolled must opt for a course.
Partial:
When it is not necessary for all the entities from an entity set to particapte ion a
relationship type, it is called participation. For example, the participation of the entity set
student in ‘represents’ is partial, since not every student in a class is a class
representative.
Weak Entity:
Entity types that do not contain any key attribute, and hence can not be identified
independently are called weak entity types. A weak entity can be identified by uniquely
only by considering some of its attributes in conjunction with the primary key attribute of
another entity, which is called the identifying owner entity.
Generally a partial key is attached to a weak entity type that is used for unique
identification of weak entities related to a particular owner type. The following
restrictions must hold:

e The owner entity set and the weak entity set must participate in one to may

relationship set. This relationship set is called the identifying relationship set of
the weak entity set.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

e The weak entity set must have total participation in the identifying relationship.
Example:

Consider the entity type dependent related to employee entity, which is used to keep
track of the dependents of each employee. The attributes of dependents are : name
Jbirthrate, sex and relationship. Each employee entity set is said to its own the
dependent entities that are related to it. How ever, not that the ‘dependent’ entity does
not exist of its own., it is dependent on the employee entity. In other words we can say
that in case an employee leaves the organization all dependents related to without the
entity ‘employee’. Thus it is a weak entity.

Keys:

Super key:

A super key is a set of one or more attributes that taken collectively, allow us to
identify uniquely an entity in the entity set.

For example , customer-id,(cname,customer-id),(cname,telno)

Candidate key:

In a relation R, a candidate key for R is a subset of the set of attributes of R, which
have the following properties:

e Uniqueness: no two distinct tuples in R have the same values for
the candidate key
e lrreducible: No proper subset of the candidate key has the

uniqueness property that is the candidate key.
Eg: (cname,telno)
Primary key:
The primary key is the candidate key that is chosen by the database designer as the
principal means of identifying entities with in an entity set. The remaining candidate
keys if any, are called alternate key.

Prepared by: Dr. Subhendu Kumar Rath

ER-DIAGRAM:

The overall logical structure of a database using ER-model graphically with the help
of an ER-diagram.
Symbols use ER- diagram:

) DS
&

Weak entit . .
y composite attribute

Relationship

]
O attribute
O

Multi valued attribute
RO = : : Identifying
. . Derived attribute Relationship

@ Key attribute
1 m
‘1@1‘ _%

One-to -one One-to -many
m 1

_% Am<>n‘
many-to -one many-to -many

-

Total participation Partial participation

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Clocation™

driver

accident

C_q_:_irmmge—mnotm{_)

Figure 2.1 E-R diagram for a Car-insurance company.

Cinm>

Gt
?/

test_ l'j —:> test]:uerformed by

@t;checkgd@

e TD s n_nD G (o) ey Cspesiaization >

Figure 2.2 E-R diagram for a hospital.

A university registrar’s office maintains data about the following entities: (a)
courses, including number, title, credits, syllabus, and prerequisites; (b) course
offerings, including course number, year, semester, section number, instructor(s),
timings, and classroom; (¢) students, including student-id, name, and program;
and (d) instructors, including identification number, name, department, and ti-
tle. Further, the enrollment of students in courses and grades awarded to stu-
dents in each course they are enrolled for must be appropriately modeled.

Construct an E-R diagram for the registrar’s office. Document all assumptions
that you make about the mapping constraints.

Prepared by: Dr. Subhendu Kumar Rath

GO @D G G Comd GO G

~. | _—
student @ *[E?FETLZ;S] @ instructor

e T~ B .
G || D o

Crogam > (>

s:-‘llab;_;) @rs@
me f—Cied

prerequisit
maincourse
Ceredity
credits
e

Figure 2.3 E-R diagram for a university.

D@D D G Comd
\5_4//

course= — -:‘crurse@
offerings
@6 ,\Hiemester

student

@'og mnD mark

Qin@

cxam

Ced
Coame)

Figure 2.4 E-R diagram for marks database.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

QED { match

‘spason_scord
-

e -

o> i

team

P

(mma) { ranking)

Figure 2.7 E-R diagram for all teams statistics.

Consider a university database for the scheduling of classrooms for final exams.
This database could be modeled as the single entity set exam, with attributes
covrse-name, section-number, room-number, and time. Alternatively, one or more
additional entity sets could be defined, along with relationship sets to replace
some of the attributes of the exam entity set, as

o course with attributes name, department, and c-number

e section with attributes s-number and enrolliment, and dependent as a weak
entity set on course

e room with attributes r-number, capacity, and building

Prepared by: Dr. Subhendu Kumar Rath

..M__am-) Qpartment 5- nume __nrollnic;]_“lht‘)

course * [section | H

Gnumber ‘

= (_Q_ e

T~

Cormmber - Ceapacity) Cbuiding CGime> Coamid O

Figure 2.12 E-R diagram for exam scheduling.

e Y

c@d\gj}/@,

publisher _@

(jd?'f emazi
published-by
?m

customer

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Coame) Cdepartment) Coanmber > Cenroliment

"""\-\.._Lh.___,-"'.--'

Rt
c-number)

Q-number_:) '::EEPMiE'}_'::' (:: b1|i]-:|ing-_}

room e i T | exam
P . —
_-I--- - -\-"-\.
-~ T
—

Figure 2.12 E-R diagram for exam scheduling.

Advanced ER-diagram:

Abstraction is the simplification mechanism used to hide superfluous details of a set of
objects. It allows one to concentrate on the properties that are of interest to the
application.

There are two main abstraction mechanism used to model information:

Generalization and specialization:

Generalization is the abstracting process of viewing set of objects as a single
general class by concentrating on the general characteristics of the constituent sets while
suppressing or ignoring their differences. It is the union of a number of lower-level entity
types for the purpose of producing a higher-level entity type. For instance, student is a
generalization of graduate or undergraduate, full-time or part-time students. Similarly,
employee is generalization of the classes of objects cook, waiter, and cashier.
Generalization is an IS_A relationship; therefore, manager IS_AN employee, cook IS_AN
employee, waiter IS_AN employee, and so forth.

Specialization is the abstracting process of introducing new characteristics to an
existing class of objects to create one or more new classes of objects. This involves taking
a higher-level, and using additional characteristics, generating lower-level entities. The
lower-level entities also inherits the, characteristics of the higher-level entity. In applying
the characteristics size to car we can create a full-size, mid-size, compact or subcompact
car. Specialization may be seen as the reverse process of generalization addition specific
properties are introduced at a lower level in a hierarchy of objects.

Prepared by: Dr. Subhendu Kumar Rath

—

L employee .
Generalization pioy Specialization

A

Full time Part-time
emblovee employee
\ 4
I I le le
I I I I
faculty staff teaching casual
o>
EMPLOYEE(empno,name,dob) Faculty(empno,degree,intrest)
FULL_TIME_EMPLOYEE(empno,sala Staff(empno,hour-rate)
ry) Teaching (empno,stipend)

PART_TIME_EMPLOYEE(empno,type)

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

X sales-rax-) ,
maodel rate sales-volume

vehicle

Ron-conmercial-

commercial-
vehicle-tax-rate

commercial-

vehicle vehicle
- o mator-
bus van cat cyele

Figure 2.19 E-R diagram of motor-vehicle sales company.

Aggregation:
Aggregation is the process of compiling information on an object, there by abstracting a
higher level object. In this manner, the entity person is derived by aggregating the

characteristics of name, address, ssn. Another form of the aggregation is abstracting a
relationship objects and viewing the relationship as an object.

Prepared by: Dr. Subhendu Kumar Rath

Job

Employe

Branch

Manager

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

(o) Gome) (o)
project

ESE

<

machinery

1
/_name>
S~
Figure 2.8 E-R diagram Example 1 of aggregation.
= & @&
| 1
manufacturar @ distributor

product
1
<>
N~

Figure 2.9 E-R diagram Example 2 of aggregation.

Prepared by: Dr. Subhendu Kumar Rath

Explain the distinctions among the terms primary key, candidate key, and su-

perkey.
")

Answer: A superkey is a set of one or more attributes that, taken collectively, al-
lows us to identify uniquely an entity in the entity set. A superkey may contain
extraneous attributes. If K is a superkey, then so is any superset of K. A superkey
for which no proper subset is also a superkey is called a candidate key. It is pos-
sible that several distinct sets of attributes could serve as candidate keys. The
primary key is one of the candidate keys that is chosen by the database designer
as the principal means of identifying entities within an entity set.

ER- Diagram For College Database

Student

44

gaurdian

Department

[\ o

Aaddrac

ralatinnchin

Course

P

@

Faculty

Natn

Conversion of ER-diagram to relational database

Conversion of entity sets:
1. For each strong entity type E in the ER diagram, we create a relation R containing

all the single attributes of E. The primary key of the relation R will be one of the

key attribute of R.

STUDENT((rollno (primary key),name, address)

FACULTY (id(primary key),name ,address, salary)
COURSE(course-id,(primary key),course_name,duration)
DEPARTMENT (dno(primary key),dname)

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

2. for each weak entity type W in the ER diagram, we create another relation R that
contains all simple attributes of W. If E is an owner entity of W then key attribute
of E is also include In R. This key attribute of R is set as a foreign key attribute of
R. Now the combination of primary key attribute of owner entity type and partial
key of the weak entity type will form the key of the weak entity type

GUARDIAN((rollno,name) (primary key),address,relationship)

Conversion of relationship sets:
Binary Relationships:
e One-to-one relationship:
For each 1:1 relationship type R in the ER-diagram involving two entities E1 and
E2 we choose one of entities(say E1) preferably with total participation and add
primary key attribute of another E as a foreign key attribute in the table of
entity(E1). We will also include all the simple attributes of relationship type R in
El if any, For example, the department relationship has been extended tp include
head-id and attribute of the relationship.

DEPARTMENT(D_NO,D_NAME,HEAD_ID,DATE_FROM)

e One-to-many relationship:

For each 1:n relationship type R involving two entities E1 and E2, we identify the
entity type (say E1) at the n-side of the relationship type R and include primary
key of the entity on the other side of the relation (say E2) as a foreign key attribute
in the table of E1. We include all simple attribute(or simple components of a
composite attribute of R(if any) in he table E1)

For example:

The works in relationship between the DEPARTMENT and FACULTY. For this
relationship choose the entity at N side, i.e, FACULTY and add primary key
attribute of another entity DEPARTMENT, ie, DNO as a foreign key attribute in
FACULTY.

FACULTY(CONSTAINS WORKS_IN RELATIOSHIP)
(ID,NAME,ADDRESS,BASIC_SAL,DNO)

e Many-to-many relationship:

For each m:n relationship type R, we create a new table (say S) to represent R, We
also include the primary key attributes of both the participating entity types as a
foreign key attribute in s. Any simple attributes of the m:n relationship type(or
simple components as a composite attribute) is also included as attributes of S.

For example:

The M:n relationship taught-by between entities COURSE; and FACULTY shod
be represented as a new table. The structure of the table will include primary key
of COURSE and primary key of FACULTY entities.

Prepared by: Dr. Subhendu Kumar Rath

TAUGHT-BY(ID (primary key of FACULTY table),course-id (primary key of
COURSE table)

e N-ary relationship:

For each n-anry relationship type R where n>2, we create a new table S to
represent R, We include as foreign key attributes in s the primary keys of the
relations that represent the participating entity types. We also include any simple
attributes of the n-ary relationship type(or simple components of complete
attribute) as attributes of S. The primary key of S is usually a combination of all
the foreign keys that reference the relations representing the participating entity

types.

Customer Loan
Loan -
sanctio
LOAN-SANCTION(cusomet-ig Employee ,sancdate,loan_amount)

e Multi-valued attributes:

For each multivalued attribute ‘A’, we create a new relation R that includes an
attribute corresponding to plus the primary key attributes k of the relation that
represents the entity type or relationship that has as an attribute. The primary key
of R is then combination of A and k.

For example, if a STUDENT entity has rollno,name and phone number where
phone numer is a multivalued attribute the we will create table
PHONE(rollno,phoneno) where primary key is the combination,In the STUDENT
table we need not have phone number, instead if can be simply (rollno,name)
only.

PHONE(rollno,phoneno)

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

A -@ ’\ Account f

generalisation

specialisation

Saving Current

e Converting Generalisation /specification hierarchy to tables:

A simple rule for conversion may be to decompose all the specialized entities into
table in case they are disjoint, for example, for the figure we can create the two
table as:

Account(account_no,name,branch,balance)

Saving account(account-no,intrest)

Current_account(account-no,charges)

Prepared by: Dr. Subhendu Kumar Rath

Record Based Logical Model

Hierarchical Model:

e A hierarchical database consists of a collection of records which are connected to
one another through links.
e arecord is a collection of fields, each of which contains only one data value.
e Alink is an association between precisely two records.
e The hierarchical model differs from the network model in that the records are
organized as collections of trees rather than as arbitrary graphs.
Tree-Structure Diagrams:
e The schema for a hierarchical database consists of
0 boxes, which correspond to record types
o lines, which correspond to links
e Record types are organized in the form of a rooted tree.
0 No cycles in the underlying graph.
0 Relationships formed in the graph must be such that only
one-to-many or one-to-one relationships exist between a parent and a
child.

Database schema is represented as a collection of tree-structure diagrams.
= single instance of a database tree
= The root of this tree is a dummy node
= The children of that node are actual instances of the
appropriate record type
When transforming E-R diagrams to corresponding tree-structure diagrams, we must
ensure that the resulting diagrams are in the form of rooted trees.

Single Relationships:

= Example E-R diagram with two entity sets, customer and account, related through
a binary, one-to-many relationship depositor.
= Corresponding tree-structure diagram has
o the record type customer with three fields: customer-name, customer-
street, and customer-city.
o the record type account with two fields: account-number and balance
0 the link depositor, with an arrow pointing to customer

= |f the relationship depositor is one to one, then the link depositor has two arrows.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

customer-name | customer-street | customer-city customer

A

Y

account-number | balance | account

= Only one-to-many and one-to-one relationships can be directly represented in the
hierarchical mode.

Transforming Many-To-Many Relationships:
= Must consider the type of queries expected and the degree to which the database
schema fits the given E-R diagram.

= In all versions of this transformation, the underlying database tree (or trees) will
have replicated records.

customer-street

customer depositor

accotmnt

(a) E-R diagram

|cusfmner—nmr:e customer-street customer—cityl [ﬂCCOlH'If—J'HHﬂbErlbﬂfﬂnfi_’|

b customer A accotnt

I account-number |ba!mrcr.’ | |c:;smmm‘—name ICHSIOHIL’?‘-SM'(,’L’f |casmmcr—cfty |

account customer
tree Ty tree T>

(b) Tree-structure diagrams

= Create two tree-structure diagrams, T1, with the root customer, and T2, with
the root account.

= InT1, create depositor, a many-to-one link from account to customer.

= In T2, create account-customer, a many-to-one link from customer to account.

Prepared by: Dr. Subhendu Kumar Rath

.""’I T
.-"'-”-) -“-\“"-.___h
| Hayes [Main []-{arr;ﬂnl I](!hnsnn| Alma [Pnln /\ltnl [Sl:nilh | North | Rye I
- CCIRR _‘___“- -/_"_. i \‘\\ .
[A-102 [400 | [A-101 [500 | [A-201 [900 | [A-201 [900 | |A-\215 | 700 |
(@)
-] ‘ I‘ -
A-102 ’41;0 |A-101 | 500 [A-201 | 900 | |A215 | 700 |
\
| Hayes [M;in |Harrisnn| \
|Julm:iun‘ Alma l’al.u Altﬂ1| \\
Johnson | Alma |Palo J’\ltn‘
| Smith] North] Rye |
| Smith l North | Rye ‘
(b)

Virtual Records:

For many-to-many relationships, record replication is necessary to preserve the
tree-structure organization of the database.

o Data inconsistency may result when updating takes place

0 Waste of space is unavoidable
Virtual record — contains no data value, only a logical pointer to a particular
physical record.
When a record is to be replicated in several database trees, a single copy of that
record is kept in one of the trees and all other records are replaced with a virtual
record.
Let R be a record type that is replicated in T1, T2, ..., Tn. Create a new virtual
record type virtual-R and replace R in each of the n — 1 trees with a record of type
virtual-R.
Eliminate data replication in the diagram shown on page B.11; create virtual-
customer and virtual-account.
Replace account with virtual-account in the first tree, and replace customer with
virtual-customer in the second tree.
Add a dashed line from virtual-customer to customer, and from virtual-account to
account, to specify the association between a virtual record and its corresponding
physical record.

Prepared by: Dr. Subhendu Kumar Rath

Network Model:
= Data are represented by collections of records.
0 similar to an entity in the E-R model
0 Records and their fields are represented as record type

= type customer = record type account = record type
customer-name: string; account-number: integer;
customer-street: string; balance: integer;
customer-city: string;

* end end

= Relationships among data are represented by links
o0 similar to a restricted (binary) form of an E-R relationship
o restrictions on links depend on whether the relationship is many-many,
many-to-one, or one-to-one.
Data-Structure Diagrams:
= Schema representing the design of a network database.
= A data-structure diagram consists of two basic components:
o0 Boxes, which correspond to record types.
o0 Lines, which correspond to links.
= Specifies the overall logical structure of the database.

For every E-R diagram, there is a corresponding data-structure diagram.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Since a link cannot contain any data value, represent an E-R relationship with
attributes with a new record type and links.

customer

account

(a) E-R diagram

customer-name | customer-street | customer-city I | account-number | balance |
custonier account
customer-date account-date

access-date

access-date
(b) Network diagram
To represent an E-R relationship of degree 3 or higher, connect the participating
record types through a new record type that is linked directly to each of the original
record types.

1. Replace entity sets account, customer, and branch with record types account,
customer, and branch, respectively.
2. Create a new record type Rlink (referred to as a dummy record type).
3. Create the following many-to-one links:
0 CustRlink from Rlink record type to customer record type
o0 AcctRInk from Rlink record type to account record type
o BrncRInk from Rlink record type to branch record type

Prepared by: Dr. Subhendu Kumar Rath

¢« branch-city >
 branch-name > <;'_':

| branch

L

P b
<,/ CAB >
N 7

N

Ccustomer-streef

(Customer-name) customer-city

| customer

y
-
b -
o

(a) E-R diagram

assets)

—
N
,
Y
N,

/
N

accouit

c@account-number> < balance

ya

/

4

customer-name | customer-street lc.‘ars tomer-city | l branch-name |branch-city | assets

customer o f]
e | nc.‘mrmr—pmmberl balance |
RN J
4 accowt -~
CustRInk \._\/‘l{‘t‘mekT
g

N

Rliink
(b) Data structure diagram

'1

“BrnchRiInk

branch

The DBTG CODASYL Model:

o All links are treated as many-to-one relationships.
o To model many-to-many relationships, a record type is defined to represent the

relationship and two links are used.

1 mrmm-r—.-il’@)

CHSIOMer-Hame

crstoner

(a) E-1 diagram

ACCAUR =R Ber

acconnt

Barlexr we 3

CUSEOMICT=Harie lc.

restreet lcr i::h)m‘('.!‘c.r'fyl

[accornt-rnumber [patance

CUsFOReT
CrstRink

Rlirnk
(b} Data structure diagram

aceotint
Acct Rlnk

DBTG Sets:

The structure consisting of two record types that are linked together is referred

o]
to in the DBTG model as a DBTG set

0 Ineach DBTG set, one record type is designated as the owner, and the other is
designated as the member, of the set.

o Each DBTG set can have any number of set occurrences (actual instances of
linked records).

o Since many-to-many links are disallowed, each set occurrence has precisely
one owner, and has zero or more member records.

o No member record of a set can participate in more than one occurrence of the
set at any point.

o]

different DBTG sets.

A member record can participate simultaneously in several set occurrences of

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

.’es i
I | I |

-

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

| Tt ﬁﬂ u
It
R avﬁ i

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

RELATIONAL MODEL

Relational model is simple model is simple model in which database is represented as a
collection of “relations” where each relation is represented by two-dimensional table.

accowurt __rwurniber brariclhi_narmie | balarice
AA-101 IDOoOwW nNtown 500
A-102 FPerryridge 400
A-201 Brighton <200
A-215 MNMianus dele]
A-217 Brighton 750
A -222 Redw ood OO0
A-305 IRound Hill 350

The relational model was founded by E.F.Codd of the IBM in 1972.The basic concept in
the relational model is that of a relation.

Properties:
o It is column homogeneous. In other words, in any given column of a table, all
items are of the same kind.
o Each item is a simple number or a character string. That is a table must be in first
normal form.
o All rows of a table are distinct.
0 The ordering of rows with in a table is immaterial.

Prepared by: Dr. Subhendu Kumar Rath

0 The column of a table are assigned distinct names and the ordering of these
columns in immaterial.

Domain, attributes tuples and relational:
Tuple:
Each row in a table represents a record and is called a tuple .A table containing ‘n’
attributes in a record is called is called n-tuple.
Attributes:
The name of each column in a table is used to interpret its meaning and is called an
attribute.Each table is called a relation.
In the above table, account_number, branch name, balance are the attributes.
Domain:
A domain is a set of values that can be given to an attributes. So every attribute in a
table has a specific domain. Values to these attributes can not be assigned outside
their domains.
Relation:
A relation consist of
o0 Relational schema
o0 Relation instance

Relational schema:

A relational schema specifies the relation’ name, its attributes and the domain of each
attribute. If R is the name of a relation and A1,A2,... and is a list of attributes
representing R then R(AL1,A2,...,an) is called a relational schema. Each attribute in
this relational schema takes a value from some specific domain called domain(Ai).
Example:

PERSON(PERSON _IDinteger, NAME: STRING,AGE:INTEGER,ADDRESS:string)
Total number of attributes in a relation denotes the degree of a relation.since the
PERSON relation schemea contains four attributes ,so this relation is of degree 4.

Relation Instance:

A relational instance denoted as r is a collection of tuples for a given relational
schema at a specific point of time.

A relation state r to the relations schema R(A1,A2...,An) also denoted by r® is a set
of n-tuples

R{t1,t2,...tm}

Where each n-tuple is an ordered list of n values

T=<vl,Vv2,....vn>

Where each vi belongs to domain (Ai) or contains null values.

The relation schema is also called ‘intension’ and the relation state is also called
‘extension’.

Eg:

Relation schema for student:
STUDENT((rolIno:strinhg,name:string,city:string,age:integer)

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Relation instance:
Student:

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Keys:

Super key:

A super key is an attribute or a set of attributes used to identify the records uniquely in
a relation.

For example , customer-id,(cname,customer-id),(cname,telno)

Candidate key:

Super keys of a relation can contain extra attributes . candidate keys are minimal
super keys. i.e, such a key contains no extraneous attribute. An attribute is called
extraneous if even after removing it from the key, makes the remaining attributes still
has the properties of a key.

In a relation R, a candidate key for R is a subset of the set of attributes of R, which
have the following properties:

e Uniqueness: no two distinct tuples in R have the same values for
the candidate key
e lrreducible: No proper subset of the candidate key has the

uniqueness property that is the candidate key.
e A candidate key’s values must exist. It can’t be null.
e The values of a candidate key must be stable. Its value can not change outside
the control of the system.

Eg: (cname,telno)
Primary key:
The primary key is the candidate key that is chosen by the database designer as the
principal means of identifying entities with in an entity set. The remaining candidate
keys if any are called alternate key.

RELATIONAL CONSTRAINTS:

There are three types of constraints on relational database that include
0 DOMAIN CONSTRAINTS
0 KEY CONSTRAINTS
0 INTEGRITY CONSTRAINTS

DOMAIN CONSTRAINTS:
It specifies that each attribute in a relation an atomic value from the corresponding
domains. The data types associated with commercial RDBMS domains include:

Prepared by: Dr. Subhendu Kumar Rath

Standard numeric data types for integer

Real numbers

Characters

o0 Fixed length strings and variable length strings

Thus, domain constraints specifies the condition that we to put on each instance of the
relation. So the values that appear in each column must be drawn from the domain
associated with that column.

O OO

Rollno Name City Age
101 Sujit Bam 23
102 kunal bbsr 22

Key constraints:
This constraints states that the key attribute value in each tuple msut be unique .i.e, no
two tuples contain the same value for the key attribute.(null values can allowed)

Emp(empcode,name,address) . here empcode can be unique

Integrity constraints:

There are two types of integrity constraints:
o0 Entity integrity constraints
0 Referential integrity constraints

Entity integrity constraints:

It states that no primary key value can be null and unique. This is because the primary key
is used to identify individual tuple in the relation. So we will not be able to identify the
records uniquely containing null values for the primary key attributes. This constraint is
specified on one individual relation.

Referential integrity constraints:

It states that the tuple in one relation that refers to another relation must refer to an
existing tuple in that relation. This constraints is specified on two relations .

If a column is declared as foreign key that must be primary key of another table.

Department(deptcode,dname)
Here the deptcode is the primary key.
Emp(empcode,name,city,deptcode).
Here the deptcode is foreign key.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

CODD'S RULES

Rule 1 : The information Rule.

"All information in a relational data base is represented explicitly at the logical level and
in exactly one way - by values in tables."

Everything within the database exists in tables and is accessed via table access routines.
Rule 2 : Guaranteed access Rule.

"Each and every datum (atomic value) in a relational data base is guaranteed to be
logically accessible by resorting to a combination of table name, primary key value and
column name."

To access any data-item you specify which column within which table it exists, there is
no reading of characters 10 to 20 of a 255 byte string.
Rule 3 : Systematic treatment of null values.

"Null values (distinct from the empty character string or a string of blank characters and
distinct from zero or any other number) are supported in fully relational DBMS for
representing missing information and inapplicable information in a systematic way,
independent of data type."

If data does not exist or does not apply then a value of NULL is applied, this is
understood by the RDBMS as meaning non-applicable data.
Rule 4 : Dynamic on-line catalog based on the relational model.

"The data base description is represented at the logical level in the same way as-ordinary
data, so that authorized users can apply the same relational language to its interrogation as
they apply to the regular data.”

The Data Dictionary is held within the RDBMS, thus there is no-need for off-line
volumes to tell you the structure of the database.

Rule 5 : Comprehensive data sub-language Rule.

"A relational system may support several languages and various modes of terminal use
(for example, the fill-in-the-blanks mode). However, there must be at least one language
whose statements are expressible, per some well-defined syntax, as character strings and
that is comprehensive in supporting all the following items

o Data Definition

e View Definition

« Data Manipulation (Interactive and by program).
e Integrity Constraints

e Authorization.

Prepared by: Dr. Subhendu Kumar Rath

Every RDBMS should provide a language to allow the user to query the contents of the
RDBMS and also manipulate the contents of the RDBMS.

Rule 6 : .View updating Rule
"All views that are theoretically updateable are also updateable by the system."

Not only can the user modify data, but so can the RDBMS when the user is not logged-in.
Rule 7 : High-level insert, update and delete.

"The capability of handling a base relation or a derived relation as a single operand
applies not only to the retrieval of data but also to the insertion, update and deletion of
data.”

The user should be able to modify several tables by modifying the view to which they act
as base tables.

Rule 8 : Physical data independence.

"Application programs and terminal activities remain logically unimpaired whenever any
changes are made in either storage representations or access methods."

The user should not be aware of where or upon which media data-files are stored

Rule 9 : Logical data independence.

"Application programs and terminal activities remain logically unimpaired when
information-preserving changes of any kind that theoretically permit un-impairment are
made to the base tables."

User programs and the user should not be aware of any changes to the structure of the
tables (such as the addition of extra columns).

Rule 10 : Integrity independence.

"Integrity constraints specific to a particular relational data base must be definable in the
relational data sub-language and storable in the catalog, not in the application programs."

If a column only accepts certain values, then it is the RDBMS which enforces these
constraints and not the user program, this means that an invalid value can never be
entered into this column, whilst if the constraints were enforced via programs there is
always a chance that a buggy program might allow incorrect values into the system.

Rule 11 : Distribution independence.

"A relational DBMS has distribution independence.”

The RDBMS may spread across more than one system and across several networks,
however to the end-user the tables should appear no different to those that are local.

Rule 12 : Non-subversion Rule.

"If a relational system has a low-level (single-record-at-a-time) language, that low level
cannot be used to subvert or bypass the integrity Rules and constraints expressed in the
higher level relational language (multiple-records-at-a-time)."

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Prepared by: Dr. Subhendu Kumar Rath

RELATION ALGEBRA:
Relational algebra is a set of basic operations used to manipulate the data in relational
model. These operations enable the user to specify basic retrieval request. The result of
retrieval is anew relation, formed from one or more relation. These operation can be
classified in two categories.
%+ Basic Set Operation

» Union

» Intersection

» Set difference

» Cartesian product
* Relational operations

> Select

> Project

» Join

» Division

Basic set operation:

These are the binary operations; i.e, each is applied to two sets or relations. These two
relations should be union compatible except in case of Cartesian product.

Two relations R(A1,A2...,AN) and S(B1,B2...BN) are said to be union compatible if
they have the same degree n and domains of the corresponding attributes are also the
same; domain(Ai)=Domain(bl) for 1<=i<=n.

Union Operation — Example
Relations r, s: rus:

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Al|lB AllB
5)
r S
alll
all?2
,31
183

UNION OPERATION:

Notation: rus
Defined as:
rus={t|terortes}

For r U s to be valid.

r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd column of r deals
with the same type of values as does the 2nd column of s)

E.g. to find all customers with either an account or a loan ITcustomer-name
(de[)OSItOI’) U chstomer-name (borrower)

Set Difference
Operation — Example
Relations r, s:

Prepared by: Dr. Subhendu Kumar Rath

Al|lB Al|B
alll all 2
all 2 ,B 3
Vi 1
S
r
1

™ R
=

Set Difference Operation

» Notationr-s
» Defined as:
» r-s={t|terandt ¢ s}
» Set differences must be taken between compatible relations.
o0 rand s must have the same arity
o0 attribute domains of r and s must be compatible

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Cartesian product — Example

Al B C|D|E AIlB|C|D]|E
all 1l a |l 10| a alll]|l a||10]a
Gl 2 £ 10] a alll]| g||10|a
pll20|b all 1| gll20]b
r y || 10] b alll] y||20|b
ProjectOperation # ExXample10 | a
o AllBllc s1l121 p|l10]a
Relation r: ﬁ 2 ﬁ 20 | b
all 10| 1
“1l 20| 1 R|| 2 » 110 | h
30| 1 .
§ 20| 2 rxs:
Notationr x s
efined as: All C AllC
[d@ﬁaﬁo@tqlte e s)
Assumethatatl ¢ || 1 |of r(R| & [{ 1 [S) are disjoint. (Thatis, RN S =
l’@' 2b..,Ak(fr“ 1 - | A % _
whég%e”‘gi'l, Nfar%éngi ue| SERES Anlt T |SI0IBfHRFNIGRAMING must be
The result is defjned| as fthe relati k columns obtained by erasing the
columns that are not liste

[] Duplicate rows removed from result, since relations are sets

[] E.g. To eliminate the branch-name attribute of account

[Taccount-number, balance (account)

Prepared by: Dr. Subhendu Kumar Rath

Select Operation — Example

* Relationr A[B|C|D
alal|ll| 7
a| Bl 5|7
B pl12| 3
B | p|23|10

® Gp-grp>s5 (M)

A|B|C|D
ala|l]|7
23|10

Notation: o p(I)

p is called the selection predicate

Defined as:

oy() ={t|terandp(t)}
Where p is a formula in propositional calculus consisting of

terms connected by : A (and), v (or), — (not) Each term is one of:
<attribute>op <attribute> or <constant>

where op is one of: =, #,> 2. <. <

Example of selection:

Q: Display the account details belonging to the branch “perryridge”. O pranch-

name="Perryridge~(account)

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Rename Operation

Allows us to name, and therefore to refer to, the results of relational-
algebra expressions.

Allows us to refer to a relation by more than one name.

Example:

Px (E)
returns the expression E under the name X
If arelational-algebra expression E has arity n, then

Px (A1, A2, ..., An) (E)
returns the result of expression E under the name X, and with the
attributes renamed to Al, A2,, An.

Set-Intersection Operation

Notation: rn's
Defined as:
rons={t|terandtes}

Assume:
O r, s have the same arity
[attributes of r and s are compatible

] Note:rms=r-(r-5s)
Set-Intersection Operation - Example
B A |l B |

o 2
B 3

(N N A I R

n Relationr, s:

=R R[>

PN

Prepared by: Dr. Subhendu Kumar Rath

Natural-Join Operation

o L M@tgtﬁmt sfbe relations on schemas R and S respectively.
s Then, r X's is a relation on schema R U S obtained as follows:

[Consider each pair of tuples ty from r and tg from s.

0 If ty and tg have the same value on each of the attributes in R N S,
add a tuple t to the result, where

[t has the same value as tron r

[t has the same value as tg on s

1 Example:
R=(A, B, C,D)
S=(E, B, D)
[Result schema = (A, B, C, D, E)
N r X' sis defined as:

[IrA rB,r.C,rD,sE(OrB=sBArD=s.D(X S))

Natural Join Operation — Example

[l Relationsr.s:

E|B

|

R X ™R
)

@)

O
|w|\3|—\w|a||_wl
[9]

NERANPRE
X ™ R
oCLO T OO
TCoT o o

m R K

q
0

Fxs EB clo][E
al|llllal|all«a
allllala V4
alllllr||al|lea
all L\l y|al]

Prepared by: Dr. Subhendu Kumar Rath, BPUT.
Division Operation

r=S

Suited to queries that include the phrase “for all”.
Let r and s be relations on schemas R and S
respectively where

R= (Al, ceny Am, Bl, ceny Bn)

S=(B1, ...,Bp)

The result of r +s is arelation on schema
R-S=(A1, Am)

r__-sz{t I tEHR_S(r)/\VU ES(tUEf)}

Division Operation — Example

>
09)

Relations r. s: B

N

MM U R ™I KRK
NFRPFORWRRPRPWNEPR

™ R

Prepared by: Dr. Subhendu Kumar Rath

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Example Queries

n Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.

Query 1
I en(CBN="Downtownr(depositor Maccount)) N

[en(Osn=-uptown-(depositor Maccount))

where CN denotes customer-name and BN denotes
branch-name.

Query 2

chstomer-name, branch-name (deDOSItor X account)

+ Premp(branch-name) ({(“Downtown”), (“Uptown™)})

Example Queries

n Find all customers who have an account at all branches located
in Brooklyn city.

chstomer-name, branch-name (deposrtor ol account)

- 1_[branch-name (Gbranch-city = “Brooklyn” (branCh))

Prepared by: Dr. Subhendu Kumar Rath

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)
account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Example Queries

n Find all loans of over $1200

Gamount > 1200 (I0an)

n Find the loan number for each loan of an amount greater than
$1200

[Tioan-number (Camount > 1200 (I0@N))

Example Queries

n Find the names of all customers who have a loan, an account, or
both, from the bank

[customer-name (Porrower) U Tl siomer-name (depositor)
n Find the names of all customers who have a loan and an
account at bank.

[customer-name (Porrower) M Ieystomer-name (depositor)

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Example Queries

Find the names of all customers who have a loan at the Perryridge
branch.

chstomer-name (Gbranch-name:“Perryridge”
(Gborrower.loan-number = Ioan.Ioan-number(bc’rrc’Wer X Ioan)))

Find the names of all customers who have a loan atthe Perryridge
branch but do not have an account at any branch of the bank.

[Tcustomer-name (Cbranch-name = “Perryridge”

(Cborrower.loan-number = loan.loan-number(DOrrower x loany)) —
[Teustomer-name(depositor)

Example Queries

n Find the names of all customers who have a loan at the Perryridge
branch.

—Query 1

chstomer—name(Gbranch—name = “Perryridge” (
Oborrower.loan-number = Ioan.loan-number(borrOWer X Ioan)))

— Query 2

chstomer—name(cloan.Ioan—number = borrower.loan—number(
(Gbranch-name = “Perryridge”(loan)) X bOI‘I’OWGI‘))

Example Queries

Find the largest account balance
n Rename account relation as d
n The queryis:

1_[ballance(‘"’lccoum) - 1_[accou nt.balance

(Gaccount.balance < d.balance (account X Py (account)))

Prepared by: Dr. Subhendu Kumar Rath

Aggregate functions:

Aggregation function takes a collection of values and returns a single value as
a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values
Aggregate operation in relational algebra

Gl, G2, ..., Gn g F1(Al), F2(A2),...,

Fn(An) (E)
E is any relational-algebra expression
G1, G2 ..., Gnis a list of attributes on which to group (can be empty)
Each Fi is an aggregate function.
Each Ai is an attribute name

Find sum of sal fo all emp records
Goun(sap) (emp)

Find maximum salalry from emp table
Gmaxtsalary) (emp)

Find branch name and maximum salalry from emp table
Branch_name G max(satary) (€Mmp)

Aggregate Operation — Example

n Relationr:

A|B]|C
al al| 7
a| p|7
B|B|3
B| B|10
sum-C

r
gsum(c) () -

OUTER JOIN:

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

The outer join operation is an extension of the join operation to deal with missing

information.

There are three forms of outer join

> left outer join
> right outer join
> full outer join

employee:

Empname Street City

Coyote Toon Hollywood

Rabbit Tunnel carrot

Smith Revolver Death valley

William Seaview Seattle

Ft works:

Empname Branch name Salary

Coyote Mesa 1500

Rabbit Mesa 1300

Gates Redmond 5300

William Redmond 1500

Employee X ft_works

Empname Street City Branch Salary
name

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond | 1500

Left outer join:

It takes all tuples in the left relation that did not match with any tuple in the right
relation, pads the tuples with null values for all other attributes. The right relation
and adds them to the result of the natural join. In tuple (smith, Revolcer, Death
valley, null, null) is such a tuple. All information from the left relation is present
in the result of the left outer join.

Empname Street City Branch Salary
name

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond | 1500

Smith Revolver Death valley Null null

Prepared by: Dr. Subhendu Kumar Rath

Result of Employeer] ft_works

Right outer join:

It is symmetric with the left outer join. It pads tuples from the right relation that
did not match any from the left relation with nulls and adds them to the result of
the natural join. tuple(Gates,null,null,Redmond,5300) is such a tuple. Thus, all
information from the right relation is present in the result of the right outer join.

Empname Street City Branch Salary
name

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond | 1500

gates Null null Redmond | 5300

Full outer join:

It does both of those operations, padding tuples from the left relation that did not
match any from the right relation, as well as tuples from the right relation that did
not match any from the left relation, and adding them to the result of the join.
Figure 3.35 shows the result of a full outer join.

Since outer join operations may generate results containing null values, we need
to specify how the different relation-algebra operations deal with null values. It is
interesting to note that the outer join operations can be expressed by the basic
relational algebra operations. For instance the left outer join operation

Employee ft_works

Empname Street City Branch Salary
name

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond | 1500

gates Null null Redmond | 5300

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Tuple Relational Calculus

The tuple relational calculus is a non procedural query language. It describes the
desired information with out giving a specific procedure for obtaining that
information.

A query in the tuple relational calculus is expressed as:

{t|P(0)}
where P is a formula. Several tuple variables may appear in a formula. A tuple
variable is said to be a free variable unless it is quantified by a 3 or V.

n A nonnrncediiral auerv lanaiiane shere each aiierv ic nf the farm
Example Queries

n Find the loan-number, branch-name, and amount for loans of
over $1200

{t|t € loan A t [amount] > 1200}

n Find the loan number for each loan of an amount greater than $1200

{t| 7s eloan (t[loan-number] = s[loan-number] A s [amount] > 1200)}

Notice that a relation on schema [loan-number] is implicitly defined
by the query

Example Queries
Find the names d=a} am:pﬂ@ @@@{iﬂ@:@, an account, or both

at the bank
ggﬁ%&%@@%&éﬂé’?—tnamep viu e

omer-name] = u[customer-name])

(it s <chssrrwrsiiqustesmesrnamnel) = Heusiomer-name)
atli:]nedaﬁ;%ﬁ-number% L%gﬁggw-gé-mﬁerl)ﬁvg%gé%W&OUnt

. Safety of E essjons
aci'gggt'] e-8aMgsy %\HE 4 ‘%/[%Iffé‘ﬂ@ﬁ?e‘(‘)&grg‘\%]’% %J@@&&HQ PRame])
e s s BepBelRRt oustomer namel = uleystomer.namel)
intinite relpsa@sver(t{customer-name] = s[customer-

Prepared by: Dr. Subhendu Kumar Rath

Domain Relational Calculus

A nonprocedural queﬁ')@agm]apel ea@eiet j@gwer to the tuple

relational calculus
Each query is an exqression of the form:
=

"OEEN-BVTEE T AIE (OBE)
QBE — Basic Structure

n A graphical query language which is based (roughly) on the
domain relational calculus

n Two dimensional syntax — system creates templates of relations
that are requested by users

n Queries are expressed “by example”

branch | branch-name branch-city | assets

| | \

customer | customer-name | customer-street | customer-city |

loan | loan-number branch-name | amount |

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

CEESkEicion Biles(Cont)

borrower

customer-name

loan-number

account

account-number

branch-name

balance

depositor

customer-name

account-number

Qleries anOne RElation

m Addl lcannunbers a tre Fenynidcgebradnh

loan-number

branch-name

amount

E._x

| Perryridge

* Xisavaidde (gqiad,; canbeariiedinaboveqay)
* P nears ppint (dsday)

» dudicaes aerenovwed by defait
 Torctand ppicades utee PALL

loan-number

branch-name

EALL.

Perryridge

Prepared by: Dr. Subhendu Kumar Rath

QueriesanQre RElstion(Qort)
m Dday il dEisdfdl loas

ivithod 1:

loan-number branch-name amount

Py P =z

branch-name | amount |
P. | |

amount
>700

branch branch-city assets

— Brooklyn

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Queries anQre RElaion(QGot)

m RAndthelcannunbars of dl lcans nracke jantiy to Srith
adJores

borrower customer-name loan-number

“Smith” B.x
“Jones” _X

= Addl aserswholneinthesanreadtyas JJnes

customer | customer-name | customer-street | customer-city |

P._x
Jones

loan loan-number branch-name amount

. Perryridge

borrower customer-namie loan-number

P._y _X

Prepared by: Dr. Subhendu Kumar Rath

depositor customer-name account-number
P._x

borrower customer-name loan-number

m Rnd the namres of al asstomrers who heve an acoout a the
benk, but do not have alcan fromithe bank

depositor customer-nare account-number
E.%

borrower customer-name loan-number

— _X

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

m Frdd asowswolaed laesdt vwoansauris

depositor customer-narme account-number

P_x

m Alons the eqessond arsfrants oandaran vaiades
thal are ather inconvenient arinpocsside toeqesswithin
theddaaeontades

m Corvdexaoditions can be usad incondition boes

m Eg Aindthelcannurbarsd dl lcensmacetoSmth, 1o
Jones atobahjantly

borrower | customer-name | loan-number |
| n | P._x |

conditions

_n = Smith or _n = Jones

Prepared by: Dr. Subhendu Kumar Rath

2 CBE supparts aninteresling syntax far eqressing dtemetive
vaues

branch-name branch-city
P. I

conditions
_x = (Brooklyn or Queens)

Condiition Box (Cont.)

m Find al account nurbers with a balance between $1,300 and
$1,500

account | account-number | branch-name | balance |
| ¥ | x|

| conditions |

_x =>1300
_x <1500

mANd all acoount nunbers with a balance between $1,300 and
$2,000 but not exadtty $1,500.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

The Result Relation

n Find the customer-name, account-number, and balance for alll
customers who have an account at the Perryridge branch.

H We need to:

4 Join depositor and account.

4 Project customer-name, account-number and balance.
H To accomplish this we:

4 Create a skeleton table, called result, with attributes customer-
name, account-number, and balance.

4 Write the query.

Tnz Resuit Releion(Carnt)

m Thereslilgaayis

account account-number branch-name balance
-y Perryridge -z
depositor customer-name account-number

X Y

Prepared by: Dr. Subhendu Kumar Rath

Crdefirg it s Disrley e F T fles

B AO=asoending ader; DO=descarding order-.

m Eg listinascending dpheboatica oder dl astarersswho hevean
acoout & the bernk

depositor customer-narie account-number
P.AO.

m VWhen sating on mulipe airnibules, the soring ader is spedfied by
induding with eexch sart gperatar (AOar DO) aninteger sumounded
by pererntheses.

m Eg List dl acoount nunrbers a the Parmyridge branch inasoending
dphebetic ader with thar respedive aoocourt belances in
descending ader.

account account-number branch-name balance
P.AO(1). Perryridge P.DO(2).

AogregeieCparEiions

m TFreapadegadaosae A GNMR MN S NV adONTD
m TFredboegeadosmH epodibedtwth AL (eg,

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Aggregate Operations (Cont.)

n UNQ is used to specify that we want to eliminate duplicates
n Find the total number of customers having an account at the bank.

depositor customer-name account-number
P.CNT.UNQ.

Modification of the Database — Deletion

n Deletion of tuples from a relation is expressed by use of a D.
command. In the case where we delete information in only some
of the columns, null values, specified by —, are inserted.

n Delete customer Smith

customer | customer-name | customer-street | customer-city |

D. | ' | | |

n Delete the branch-city value of the branch whose name is
“Perryridge”.

branch branch-name branch-city assets
Perryridge D.

Prepared by: Dr. Subhendu Kumar Rath

Deletion Query Examples

n Delete all loans with a loan amount between $1300 and $1500.

H For consistency, we have to delete information from loan and
borrower tables

loan-number branch-name amount

y X

Modification of the Database — Insertion

n Insertion is done by placing the I. operator in the query
expression.

n Insert the fact that account A-9732 at the Perryridge
branch has a balance of $700.

account | account-number | branch-name | balance |

L | A-9732 | Perryridge | |

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Modification of the Database — Updates

Use the U. operator to change a value in a tuple without changing all
values in the tuple. QBE does not allow users to update the
primary key fields.

Update the asset value of the Perryridge branch to $10,000,000.

RELATIONAL DATABASE DEGIN

Prepared by: Dr. Subhendu Kumar Rath

Data base design is a process in which you create a logical data model for a database,
which store data of a company. It is performed after initial database study phase in the
database life cycle. You use normalization technique to create the logical data model for a
database and eliminate data redundancy. Normalization also allows you to organize data
efficiently in a data base and reduce anomalies during data operation. Various normal
forms, such as first, second and third can be applied to create a logical data model for a
database. The second and third normal forms are based on partial dependency and
transitivity dependency. Partial dependency occurs when a row of table is uniquely
identified by one column that is a part of a primary key. A transitivity dependency ours
when a non key column is uniquely identified by values in another non-key column of a
table.

Data base design process:

We can identify six main phases of the database design process:
1. Requirement collection and analysis

Conceptual data base design

Choice of a DBMS

Data model mapping(logical database design)

physical data base design

database system implementation and tuning

ou s wN

1. _Requirement collection and analysis
Before we can effectively design a data base we must know and analyze the
expectation of the users and the intended uses of the database in as much as detail.
2. Conceptual data base design
The goal for this phase | s to produce a conceptual schema for the database that is
independent of a specific DBMS.

» We often use a high level data model such er-model during this
phase

» We specify as many of known database application on
transactions as possible using a notation the is independent of
any specific doms.

» Often the dbms choice is already made for the organization the
intent of conceptual design still to keep , it as free as possible
from implementation consideration.

3. Choice of a DBMS
The choice of dbms is governed by a no. of factors some technical other economic
and still other concerned with the politics of the organization.
The economics and organizational factors that offer the choice of the dbms are:
Software cost, maintenance cost, hardware cost, database creation and conversion
cost, personnel cost, training cost, operating cost.

4.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Data model mapping (logical database design)
During this phase, we map the conceptual schema from the high level data model
used on phase 2 into a data model of the choice dbms.

Physical databse design
During this phase we design the specification for the database in terms of physical
storage structure ,record placement and indexes.

Database system implementation and tuning
During this phase, the database and application programs are implemented, tested
and eventually deployed for service.

Prepared by: Dr. Subhendu Kumar Rath

FUNCTIONAL DEPENDENCIES:
The functional dependency x—y
Holds on scema R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r

such that t1[x]=t2[x]. it is also the case that t1[y]=t2[y]

For example, given the value of item code, there is only one value of item name for 1. Thus
iem name 15 functionally dependent on item code, This is shows as:

itemcode — jlem name

Similarly in table 1, given an order number, the date of the order is known. Thus ; order no,
Order date

Functipnal dependency may also be based on a composite attribute. For example, if we write
XZ oY

it means that there is only one value of Y corresponding to given values of X, Z. In other

words, Y is functionally dependent on the composite X, Z. In other words, Y is functionally

dependent on the composite X, Z. In wable 1 mentoned below, for example, Order no., and
Iiem code wgether de@mine Quy. and Price. Thus

Order no., liem code — Quy., Price
As another example, consider the relation

Student (Roll no., Name, Address, Dept., Year of study)

Order no. Order dave Tiem code Quantity Priceiunit
1456 260289 3687 52 50.40
1456 2672809 4627 38 &0.20
1456 260289 3214 20 17.50
1886 (40389 4629 45 20.25
1586 (40389 4627 0 6020
1788 OA04R9 4627 40 60.20

Table 1: Normalized Form of the Relation

In this relation, Name is functionally dependent on Roll no. In fact, given the value of Roll
no., the values of all the other attribuies can be uniquely determined, Name and Department
are nod functionally dependent because given the name of a student, one canmot find his
depanment uniquely. This is due to the fact thal there may be more than one student with the
same name, MName in this case is not a key, Department and Year of susdy are not
funcuonally dependent as Year of study pertains to a sudent whercas Department is an
independent aitribute. The functional dependency in this relation is shown in the following
figure as a dependency diagram. Such dependency diagrams shown in figure 1 are very
uszful in normalization.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Relation Key: Consider the relation of wable 1. Given the Vendor code, the Vendor name
and Address are uniguely determined. Thus Vendor code is the relation key. Givena
relation, if the value of an attribute X uniguely determines the values of all other atributes in

Figure 1: Dependency dlagram for the relation “Swdent™

a row, then X is said to be the key of that relation. Someumes more than one awribute is
needed to uniquely determine other attributes in a relation row. In that case such a set of
arributes is the key. Intable 1, Order no. and Iem code wgether form the key. In the

relation “Supplies” (Vendor code, Tiem code, Quy. supplied, Date of supply, Pricefunit),
Vendor code and Ttem code together form the key. This dependency is shown in the
following diagram (figure 2).

Quantity supplied
Wendor code

* Date of supply

Flgure 2: Dependency diagram for the redatlon “Suppliss™

Ohserve that in the figure the fact that Vendor code and Item code together form a composite
key is clearly shown by enclosing them together in a rectangle,

Prepared by: Dr. Subhendu Kumar Rath

ANOMALIES IN A DATABASE

Consider the following refation scheme penaining to the information about a smdent
mainlaincd by a university:

STDINF(Name, Course, Phone_No, Major, Prof, Grade)

Table 2 shows some wples of a relation on the relation scheme STDINF(Name, Course,
Phone_No, Major, Prof, Grade). The functional dependencies among its attributes are shown
in Figure 3. The key of the relation is Name Course and the relation has, in addidon, the
following functional dependencies {Name — Phone_No, Name — Major, Name Course —
Grade, Course — Prof].

||_ Name Course Phone_No Major Prof Grade
Jones 353 2374539 Comp Sci Smith A
Ng 329 427-7390 Chemistry Tume: B
Jones 328 2374539 Comp Sci Clark B
Martin 456 388-5183 Physics James A
Dulles 203 371-6259 Decision Sci Cook C
Duke 491 823-7293 Mathematics Lamb B
Duke 356 #23-7293 Mathematics Bond in prog
Jones 492 2374539 Comp Sci Cross in prog
Baxter 379 839-0827 English Broes C

Table 2: Student Data Representation in Relation STDINF

Here the attribuic Phone_No, which is not in any key of the relation scheme STDINF, is not
functionally dependent on the whole key but only one part of the key, namely, the attribute
Mame. Similarly, the auributes Major and Prof, which are not in any key of the relation
scheme STDINF either, are fully functionally dependent on the attribures Name and Course,
respectively. Thus the determinants of these functional dependencies are again not the entire
key but only part of the key of the relation. Only the attribute Grade is fully functionally
dependent on the key Name Course.

The relation scheme STDINF can lead to several undesirable problems:

e Redundancy: The aim of the database system is to reduce redundancy, meaning
that information is to be stored only once. Storing information several times leads
to the waste of storage space and an increase in the total size of the data stored.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Updates to the database with such redundancies have the poieniial of becoming
inconsistent, as explained below, In the relation of table 2, the Major and
Phone_No. of a student are stored scveral times in the database: once for each
course thal is or was taken by a swdent.

s Update Anomalies: Multiple copies of the same fact may lead to updaie anomalies
or inconsistencies when an update is made and only some of the muluple copies are
updated. Thus, a change in the Phone_No. of Jones must be made, for consistency,
in all tuples pertaining to the student Jones. If one of the three tuples of Figure 3 is
not changed 1o reflect the new Phone_MNo. of Jones, there will be an inconsisiency in
the data,

| Name | Course |Phone No.| Major | Prof | Grade

| 1
I

Figure 3: Functlon d epend encies in STINNF

s Insertion Anomalies: IT this is the only relation in the database showing the
association between a faculty member and the course he or she teaches, the fact that
a given processor is weaching a given course cannot be entered in the database
unless a student is registered in the course. Adso, if another relation also establishes
a relationship between a course and a professor who teaches that course the
information stored in these relauons has 0 be consistent

o Deletion Anomalies: I§ the only studemt registered ina given course discontinues
the course, the information as to which professor is offening the course will be lost if
this is the only nelation in the database showing the association between a faculty
member and the course she or he teaches. IF another relation in the database also
cstablishes the relationship between a course and a professor who teaches that
course, the deletion of the last wple in STDINF for a given course will nol cause the
information about the course’s teacher o be lost.

The problems of database inconsistency and redundancy of data are similar (o the problems
that cxist in the hierarchical and network models. These problems are addressed in the
network model by the introduction of virtual fields and in the hierarchical model by the
introduction of vinual records. In the relational model, the above problems can be remedied
by decomposition. 'We define decomposition as follows:

Definition: Decomposition
The decomposition of a relation scheme R = (A, A, .. A)is its replacement by a set of
relation schemes (R, By, By losuchthat By € Rfor 1€ ismand Ry w Ryw By =R,

A relation scheme R can be decomposed into a collection of relation schemes (R, By, By ..
R} o ehminale some of the anomalies contained in the original relaton R, Here the
relation schemes R, (1 £ i £ m) are subsets of R and the intersection of Ry m R; fori# j
need not be empty. Furthermore, the union of B (12§ sm)isecqualto R, ic.R=R, R; ..

R...

The problems in the relation scheme STDINF can be resolved if we replace it with the
Tollowing relation schemes:

STUDENT _INFO (Naine, Phone_No, Major)
TRANSCRIPT (Nu.ne, Course, Grade)
TEACHER (Course. Prof)

The first relation scheme gives the phone number and the major of each student and such
information will be stored only once for each student. Any change in the phone number will
thus require a change in only one tuple of this relaton,

Prepared by: Dr. Subhendu Kumar Rath

CLOSURE OF A SET OF FUNCTIONAL DEPEDENCIES

Given a relational schema R, a functional dependencies f on R is logically implied
by a set of functional dependencies F on R if every relation instance r(R) that
satisfies F also satisfies f.

The closure of F, denoted by F”, is the set of all functional dependencies logically
implied by F.

The closure of F can be found by using a collection of rules called Armstrong
axioms.

Reflexivity rule: If A is a set of attributes and B is subset or equal to A,
then A—B holds.

Augmentation rule: If A—B holds and C is a set of attributes, then CA—CB
holds

Transitivity rule: If A—B holds and B—C holds, then A—C holds.

Union rule: If A—B holds and A—C then A—BC holds

Decomposition rule: If A—BC holds, then A—B holds and A—C holds.

Pseudo transitivity rule: If A—B holds and BC—D holds, then AC—D holds.

Suppose we are given a relation schema R=(A,B,C,G,H,l) and the set of function
dependencies
A—B,A—C,CG—H,CG—]B—H
We list several members of F* here:
» A—H, since A—B and B—H hold, we apply the transitivity rule.
» CG—HI. Since CG—H and CG—I, the union rule implies that CG—HI
» AG—I, since A—C and CG—I, the pseudo transitivity rule implies that
AG—1 holds

Algorithm of compute F+:
To compute the closure of a set of functional dependencies F:
F+=F
repeat
for each functional dependency f in F+
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+
for each pair of functional dependencies fland f2 in F+
if f1 and f2 can be combined using transitivity
then add the resulting functional dependency to F+
until F+ does not change any further

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Closure of Attribute sets:-

To test whether a set « is a super key, we must devise an algorithm for omputing
the set of attributes functionally determined by alpha. One way of doing this is to
compute F+ take all functional dependencies. However doing so can be
expensive, since F+ can be large.

Prepared by: Dr. Subhendu Kumar Rath

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Closure of Attribute Sets

Given a set of attributes o, define the closure of a. under F (denoted
by o) as the set of attributes that are functionally determined by o

under F: a— Bisin Fo<=> Bca’
Algorithm to compute o, the closure of o under F result := o; while
(changes to result) do foreach B - yin Fdo

begin if B cresultthen result :=

result vy end

Prepared by: Dr. Subhendu Kumar Rath

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Example of Attribute Set Closure

R=(AB,C,G,H,I)

F={A—>B A->C CG —-H CG -1 B - H}
(AG)"

1. result=AG

2. result=ABCG (A —»>CandA —>B)

3. result=ABCGH (CG —Hand CG cAGBC)

4. result=ABCGHI (CG —land CG c AGBCH)

Is AG a candidate key?
Is AG a super key?

Does AG — R? ==1Is (AG)" 2R
Is any subset of AG a superkey?

Does A —» R? ==1s (A)' 2R

Does G —» R? ==1s (G)' 2R

Prepared by: Dr. Subhendu Kumar Rath

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

Testing for superkey:
To test if a is a superkey, we compute o and check if o contains all
attributes of R.

Testing functional dependencies
To check if a functional dependency a — B holds (or, in other words,
.. + . . +
isin F), justcheckif B ca .
That is, we compute o by using attribute closure, and then check if it
contains f.
Is a simple and cheap test, and very useful

Computing closure of F
For each y — R, we find the closure y*, and for each S = y*, we output
a functional dependency y — S.

Prepared by: Dr. Subhendu Kumar Rath

Prepared by: Dr. Subhendu Kumar Rath, BPUT.
Canonical Cover

Sets of functional dependencies may have redundant dependencies

that can be inferred from the others
Eg: A— Cisredundantin: {A—->B, B—>C, A—>C}
Parts of a functional dependency may be redundant
E.g.onRHS: {A—>B, B—>C, A— CD} can be simplified

to {A->B, B>C, A—-D}
E.g.onLHS: {A—>B, B—>C, AC — D} can be simplified
to {A->B, B>C, A->D}

Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant dependencies

or redundant parts of dependencies

Prepared by: Dr. Subhendu Kumar Rath

Extraneous Attributes

Consider a set F of functional dependencies and the functional dependency
oa—pinF.
Attribute A is extraneous in o if A e o and F logically implies (F — {o —
ph) w{(a —A) - B}
Attribute A is extraneous in B if A € B and the set of functional
dependencies (F —{a — B}) U {a =>(8— A)} logically implies F.
Note: implication in the opposite direction is trivial in each of the cases
above, since a “stronger” functional dependency always implies a weaker
one
Example: GivenF={A—> C,AB > C}
B is extraneous in AB — C because {A —» C, AB — C} logically implies A —
C (l.e. the result of dropping B from AB — C).
Example: Given F={A —» C, AB —» CD}
C is extraneous in AB — CD since AB — C can be inferred even after
deleting C

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Testing if an Attribute is Extraneous

Consider a set F of functional dependencies and the functional
dependency a — B in F.
To test if attribute A € o is extraneous in a
compute ({o} — A)" using the dependencies in F
check that ({o} — A)* contains A; if it does, A is extraneous
To test if attribute A € 3 is extraneous in 3
compute o using only the dependencies in F=F —{a—pB}
U {a —>(8- A},
check that o contains A; if it does, A is extraneous

Prepared by: Dr. Subhendu Kumar Rath

Canonical Cover

A canonical cover for F is a set of dependencies F. such that

F logically implies all dependencies in F;, and

Flogically implies all dependencies in F, and

No functional dependency in F. contains an extraneous attribute, and

Each left side of functional dependency in F is unique.
To compute a canonical cover for F: repeat Use the union rule to
replace any dependencies in F oy — B1 and oy — B, with
a1 — PB1 B> Find a functional dependency o — B with an

extraneous attribute either in o or in If an extraneous
attribute is found, delete it from oo — until F does not change
Note: Union rule may become applicable after some extraneous
attributes have been deleted, so it has to be re-applied

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Prepared by: Dr. Subhendu Kumar Rath

Example of Computing a Canonical Cover

R=(ABCF={A—>BC B->C A —>B AB — C}
Combine A -»BCand A - B into A - BC
Setis now {A - BC,B - C, AB - C}
A is extraneous in AB —» C
Check if the result of deleting A from AB — C is implied by the other
dependencies
Yes: in fact, B — C is already present!
Setis now {A - BC, B —C} >
C is extraneous in A — BC
Check if A — C is logically implied by A — B and the other dependencies
Yes: using transitivity on A - B and B — C.
Can use attribute closure of A in more complex cases

The canonical cover is: A —>B B—>C

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

LOSS LESS DECOMPOSITION:

A decomposition of a relation scheme R<S,F> into the relation schemes
Ri(1<=i<=n) is said to be a lossless join decomposition or simply lossless if for
every relation R that satisfies the FDs in F, the natural join of the projections or R
gives the original relation R, i.e,

R=TTre(R) Mo R)YX .. X Trn(R)

If R s subset of [Tre(R) MITra(RYX ... X [Trn(R)
Then the decomposition is called lossy.

DEPEDENCY PRSERVATION:

Given a relation scheme R<S,F> where F is the associated set of functional
dependencies on the attributes in S,R is decomposed into the relation schemes
R1,R2,...Rn with the fds F1,F2...Fn, then this decomposition of R is dependency
preserving if the closure of F* (where F’=F1 U F2 U ... Fn)

Example:

Let R(A,B,C) AND F={A—B}. Then the decomposition of R into R1(A,B) and
R2(A,C) is lossless because the FD { A—B} is contained in R1 and the common
attribute A is a key of R1.

Example:

Let R(A,B,C) AND F={A—B}. Then the decomposition of R into R1(A,B) and
R2(B,C) is not lossless because the common attribute B does not functionally
determine either A or C. i.e, it is not a key of R1 or R 2.

Example:

Let R(A,B,C,D) and F={A—B, A—C, C—D,}. Then the decomposition of R into
R1(A,B,C) with the FD F1={ A—»B, A—C }and R2(C,D) with FD F2={ C—D} .
In this decomposition all the original FDs can be logically derived from F1 and
F2, hence the decomposition is dependency preserving also . the common attribute
C forms a key of R2. The decomposition is lossless.

Example:

Let R(A,B,C,D) and F={A—B, A—C, A—D,}. Then the decomposition of R into
R1(A,B,D) with the FD F1={ A—B , A—D }and R2(B,C) with FD F2={ } is
lossy because the common attribute B is not a candidate key of either R1 and R2 .
In addition , the fds A—C is not implied by any fds R1 or R2. Thus the
decomposition is not dependency preserving.

Prepared by: Dr. Subhendu Kumar Rath

Full functional dependency:

Given a relational scheme R and an FD X—Y ,Y is fully functional dependent on
X if there is no Z, where Z is a proper subset of X such that Z—Y. The
dependency X—Y is left reduced, there being no extraneous attributes attributes
in the left hand side of the dependency.

Partial dependency:

Given a relation dependencies F defined on the attributes of R and K as a
candidate key ,if X is a proper subset of K and if F|= X—A, then A is said to be
partial dependent on K

Prime attribute and non prime attribute:

A attribute A in a relation scheme R is a prime attribute or simply prime if Ais
part of any candidate key of the relation. If A is not a part of any candidate key of
R, A is called a nonprime attribute or simply non prime .

Trivial functional dependency:
A FD X—Y is said to be a trivial functional dependency if Y is subset of X.

NORMALIZATION

The basic objective of normalization is to reduce redundancy which means that
information is to be stored only once. Storing information several times leads to
wastage of storage space and increase in the total size of the data stored. Relations
are normalized so that when relations in a database are to be altered during the life
time of the database, we do not lose information or introduce inconsistencies. The
type of alterations normally needed for relations are:

o Insertion of new data values to a relation. This should be possible without
being forced to leave blank fields for some attributes.

o0 Deletion of a tuple, namely, a row of a relation. This should be possible
without losing vital information unknowingly.

0 Updating or changing a value of an attribute in a tuple. This should be
possible without exhaustively searching all the tuples in the relation.

PROPERTIES OF NORMALIZED RELATIONS
Ideal relations after normalization should have the following properties so that the
problems mentioned above do not occur for relations in the (ideal) normalized form:

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

=

No data value should be duplicated in different rows unnecessarily.

A value must be specified (and required) for every attribute in a row.

3. Each relation should be self-contained. In other words, if a row from a
relation is deleted, important information should not be accidentally lost.

4. When a mw is added to a relation, other relations in the database should
not be affected.

5. A value of an attribute in a tuple may be changed independent of other

tuples in the relation and other relations.

N

The idea of normalizing relations to higher and higher normal forms is to attain the goals
of having a set of ideal relations meeting the above criteria.

Unnormalized relation:
Defn: An unnormalized relation contains non atomic values.

Each row may contain multiple set of values for some of the columns, these multiple
values in a single row are also called non atomic values.

Order no. Order date liem code Quantity Pricelunit
1456 260289 1687 52 50.40
4627 £} 6020
214 20 17.50
1386 040389 4629 45 20.25
4627 30 6020
1738 (40450 4627 40 60.20

FIRST NORMAL FORM:

Defn: A relation scheme is said to be in first normal form(1NF) if the values in the
domain of each attribute of the relation are atomic. In other words, only one value is
associated with each attribute and the value is not a set of values or a list of values.

Order no. Clrder date liem code Quantity Pricefunit
1456 260289 3687 52 5040
1456 260289 4627 iR 6020
1456 260289 izl4 20 17.50
1886 040389 4629 45 20.25
1886 (40389 4627 30 6020
1788 (H04ES 4627 40 60.20

Functional dependencies are:

item code = ilem name

orderno — orderdate
Order no., ltem code — Quy., Price

SECOND NORMAL FORM:

Prepared by: Dr. Subhendu Kumar Rath

Defn: A relation scheme R<S,F> is in second normal form(2NF) if it is in the INF and if
all non prime attributes are fully functionally dependent on the relation keys.

A relation is said to be in2NF if it is in INF and non-key attributes are functionally
dependent on the key attribute(s). Further. if the key has more than one attribute then no
non-key attributes should be functionally dependent upon a part of the key attributes.
Consider, for example, the relation given in table 1. This relation is in INF. The key is
(Order no.. Item code). The dependency diagram for attributes of this relation is shown in
figure 5. The non-key attribute Price_Unit is functionally dependent on Item code which
is part of the relation key. Also, the non-key attribute Order date is functionally dependent
on Order no. which is a part of the relation key.

Thus the relation is not in 2NF. It can be transformed to 2NF by splitting it into three
relations as shown in table 3.

In table 3 the relation Orders has Order no. as the key. The relation Order details has the
composite key Order no. and Item code. In both relations the non-key attributes are
functionally dependent on the whole key. Observe that by transforming to 2NF relations

the
- Order date
Order no. | o

b

rlmm -:nde_|
\{ PI'iC:EﬂJ.TliI

Figure 5: Depend ency d lagram for the relation given in tabbe

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

repetition of Order date (table 1) has been removed. Furiher, if an order for an itlem is
cancelled, the price of an item is not lost. For example, if Order no. 1886 for liem code 4629
is cancelled in table 1, then the fourth row will be removed and the price of the item is lost
In table 3 only the fourth row of the table 3(b) is omitied. The itlem price is not lost as it is
available in table 3(c). The data of the order is also not lost as it is in whle 3(a).,

THIRD NORMAL FORM:

. {a) Orders (b} Order Details (c) Prices
Order Order Chreler Iiem Oy, frem Price/
| no date | | no. Code code unit
1456 26289 1456 3687 52 3587 50.40
1886 (40389 1456 4627 32 4627 60.20
1788 4dB9 1456 3214 20 3214 17.50
1886 4629 45 4629 20.25
1886 4627 30
1788 4627 40

Tuble 3; Splitting of Reaton given In table 1 into ZNF Relations

These relations in 2NF form meet all the “ideal™ conditions specified. Observe that the three
relations obtained as self-contained. There is no duplication of data within a relation,

Defn: A relational scheme R<S,F> is in third normal form(3NF) if for all non trivial
function dependencies in F+ of the form X—A, either X contains a key(i.e, X is super
key) or A is a prime key attribute.

A Third Normal Form normalization will be needed where all attributes in a relation tuple
are not functionally dependent only on the key attribute. If two non-key attributes are
functionally dependent, then there will be unnecessary duplication of data. Consider the
relation given in table 4. Here. Roll no. is the key and all other attributes are

Ruoll no. Mame Department Year Hostel name
1784 Raman Physics 1 Ganga
1648 Krishnan Chemistry 1 Ganga
1768 Gopalan Mathematics 2 Kawveri
1R48 Raja Botany 2 Kaveri
1682 Maya Geology 3 Krishna
1485 Singh Zoology 4 Godavari

Table &: A ZNF Form Relation

functionally dependent on it. Thus it is in 2NF. If it is known that in the college all first
year students are accommodated in Ganga hostel, all second year students in Kaveri, all
third year students in Krishna, and all fourth year students in Godavari, then the non-key

attribute Hostel name is dependent on the non-key attribute Year. This dependency is
shown in figure 6.

Prepared by: Dr. Subhendu Kumar Rath

Figure 6: Dependency diagram for Lhe relation

Observe that given the year of student, his hostel is known and vice versa. The
dependency of hostel on year leads to duplication of data as is evident from table 4. If it is
decided to ask all first year students to move to Kaveri hostel, and all second year
students to Ganga hostel. this change should be made in many places in table 4. Also,
when a student's year of study changes, his hostel change should also be noted in Table 4.
This is undesirable. Table 4 is said to be in 3NF if it is in 2NF and no non-key attribute
is functionally dependent on any other non-key attribute. Table 4 is thus not in 3NF. To
transform it to 3NF, we should introduce another relation which includes the
functionally related non-key attributes. This is shown in table 5.

1682 Maya Geology
| 1485 Singh Zoology

Table 5; Conversion of able 4 lnto two INF relatlons

BOYCE CODD NORMAL FORM:

Defn: a normalized relation scheme R<S,F> is in Boyce Codd normal form if for every
nontrivial FD in F+ of the form X—A where X is subset of S and A€S, X is a super key
of R.

Assume that a relation has more than one possible key. Assume further that the composite
keys have a common attribute. If an attribute of a composite key is dependent on an
attribute of the other composite key, a normalization called BCNF is needed. Consider. as
an

example, the relation Professor:

Professor (Professor code, Dept., Head of Depd., Parent time)

Rollno. ™ Name Department Year Year Hostel name
1784 Raman Physics 1 1 Ganga
1648 Krishnan Chemistry 1 2 Kaveri
1768 Gopalan Mathematics 2 3 Krishna
1848 Raja Botany 2 4 Godavani
3
4

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

It is assumed that

1. A professor can work in more than one department

2. The percentage of the time he spends in each department is given.
3. Each department has only one Head of Department.

The relationship diagram for the above relation is given in figure 8. Table 6 gives the
relation attributes. The two possible composite keys are professor code and Dept. or
Professor code and Hcad of Dept. Observe that department as well as Head of Dept. are
not non-key attributes. They are a part of a composite key

Head of

l—mmﬂ \-ﬂ Percent time |

Department [» quad of Department

. Hmm,—| //;Ihpﬂnment
Department
T

Percent time |

Figure 8: Dependency diagram of Professor relation

Professor Code | Department Head of Dept. Parent
Pl Physics Ghosh 50
P1 Mathemaltics Krizhnan 50
P2 Chemisiry Rao 25
P2 Physics Ghosh 75
F3 Mathematics Krishnan 100

Table 6: Normalization of Relation “ Profesor”

Prepared by: Dr. Subhendu Kumar Rath

The relation given in table 6 is in ANF. Observe, however, that the names of Dept. and Head
of Dept. are duplicated. Funther, if Professor P2 resigns, rows 3 and 4 are deleted. We lose
the information that Rao is the Head of Department of Chemistry.

The normalization of the relation is done by creating a new relation for Dept. and Head of

Dept. and deleting Head of Dept. from Professor relation. The normalized relations are
shown in the following table 7.

(a) I ®)
Professor Dweparument Percent Department Head of
code lims Dept.
[| Physics 50 Physics Ghosh
Pl Mathematics 50 Mathematics Krishnan
P2 Chemistry 25 Chemistry Rao
P2 Physics 75
P3 Mathematics 100

Tuble 7: Normallzed Professor Redation in BCNF

and the dependency diagrams for these new relations in figure 8, The dependency diagram
gives the imporant clue i this normalization step as is clear from figures 8 and 9.

| Deparment |

[Professor code

o _percentime |

[| et |

Figure ¥: Dependency dlagram of Professor reatlon

MULTIVALUED DEPEDENCY:
Defn:Given a relation scheme R, Le X and Y be subsets of attributes of R. then the multi
valued dependency X ——Y holds in a relation R defined on R if given two tuples t1 and
t2 in R with t1(X)=t2(X);
R contains two tuples t3 and t4 with the following characteristics: t1,t2,t3,t4 have the X
value i.e,
T1(X)= T2(X)=T3(X)= T4(X)
The Y values of t1 and t3 are the same and the Y values of t2 and t4 are the same .i.e,
T1(Y)=T2(Y)=T3(Y)= T4(Y)

TRIVIAL MULTIVALED DEPEDENCY:

A trivial multi valued dependency is one that is satisfied by all relations R on a relation
scheme R with XY is subset or equal to R. Thus, a MVD X ——Y is trivial if Y is sub
set or equal to X or XY=R.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

FOURTH NORMAL FORM:

Defn:

Given a relation scheme R such that the set D of FDs and MVDs are satisfied, consider a
set attributes X and Y where X is subset or equal to R,Y is subset or equal to Y. The
reltion scheme R is in 4NF if for all mutivalued dependencies of the form X - —Y € D+
Either X ——Y is a trivial MVD or X is super key of R.

When attributes in a relation have multivalucd dependency, further Normalisation to 4NF
and 5NF are required. We will illustrate this with an example. Consider a vendor
supplying

many items to many projects in an organisation. The following are the assumptions:

1. A vendor is capable of supplying many items.

2. A project uses many items

3. A vendor supplies to many projects.

4. An item may be supplied by many vendors.

Table 8 gives a relation for this problem and figure 10 lhe dependency diagram(s).

"-"::m'lnr_f__udt Item code Project mo.d
I W1 11 Fl
Vi 12 Pl
W1 11 P3
V1 12 P
V2 2 Pl
V2 I3 F1
Vi Il P2
V3 I P2

Tabie B: Vendor-supply-projects Reatlon

The relation given in table 8 has a number of problems. For example:

[ﬂi_}j 1]
N e N
K [>]

st indicates multivalucd dependency

Figure 10 : Dependency dingrams of vend or-gipply-project relation

Prepared by: Dr. Subhendu Kumar Rath

e If vendor V1 has to supply to project P2, but the item is not yet decided, then a row
with a blank for item code has 1o be introdoced.

& The information about item 1 is stored twice for vendor V3.

Observe that the relation given in Table 8 is in 3NF and also in BCNF. It still has the
problems mentioned above. The problem is redeced by expressing this relation as two
relations in the Fourth Mormal Form (4NF). A relation is in 4NF if it has no more than one
independent multivalued dependency or one independent multivalued dependency with a
functional dependency.

Takle & can be expressed as the two 4NF relations given in Table 9. The fact that vendors
are capable of supplying certain itcms and that they are assigned to supply for some projects
in independently specified in the 4NF relation.

{a) Vendor Supply (b) Vendor projoct
Vendor code Item code Vendor code Project no.
Vi 1 Vi1 P1
vi 12 Vi P3
V2 12 V2 F1
V2 I3 Vi P1
L v3 11 v

Table ¥ Vendor-supply-project Relations in 48F

These relations still have a problem. Even though vendor V1's capability wo supply items
and his allotment to supply for specified projects may not need it. 'We thus need another
relation which specifies this. ‘This is called SNF form. The SNF relations are the relations in
Table 9(a) and 9b) ogether with the relation given in table 10,

Project no. Item code
P1 L}
Pl iz
P2 In
P3 n
P3 I3

Tuble 10: SNF Additonal Relation

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

In table 11 we summarise the normalisation sleps already explained.

Inpui relation T Transformation i Output relation

All relations Eliminate variable length records. Remowve IINF
multatribute lines in able

1NF relation Remove dependency of non-key atribute on part 2NF
of a multiatiribute key

2NF Remove dependency of non-Xey attributes on ANF
other non-key attributes

INF Remove dependency of an attribute of a BCNF
multiattribute key on an attribute of anather
{overlapping) molt-attribuote key

BCNE Remove more than one independent multvalued 4 NFF
dependency From relation by splitting relation

4NF Add one relation relating atributes with 5NF
multivalued dependency to the two relations
with mulivalued dependency

Table 11: Summary of Noroalisation Steps
TRANSCATION:

A transaction is a unit of program execution that accesses and possibly updates
various data items. Usually, a transaction is initiated by a user program written in a high-
level data-manipulation language or programming language (for example, SQL, COBOL,
C, C++, or Java), where it is delimited by statements (or function calls) of the form begin
transaction and end transaction. The transaction consists of all operations executed
between the begin transaction and end transaction. To ensure integrity of the data, we
require that the database system maintain the following properties of the transactions:

e Atomicity. Either all operations of the transaction are reflected properly in the
database, or none are.

e Consistency. Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

e Isolation. Even though multiple transactions may execute concurrently, the
system guarantees that, for every pair of transactions Ti and Tj , it appears to Ti
that either Tj finished execution before Ti started, or Tj started execution after Ti
finished. Thus, each transaction is unaware of other transactions executing
concurrently in the system.

e Durability. After a transaction completes successfully, the changes it has made
to the database persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from
the first letter of each of the four properties.
Let Ti be a transaction that transfers $50 from account A to account B. This transaction

can be defined as
Ti: read(A);
A=A —-50;
write(A);

Prepared by: Dr. Subhendu Kumar Rath

read(B);

B :=B +50;

write(B).
TRANSCATION STATE:

A transaction must be in one of the following states:

* Active, the initial state; the transaction stays in this state while it is executing
« Partially committed, after the final statement has been executed

» Failed, after the discovery that normal execution can no longer proceed

» Aborted, after the transaction has been rolled back and the database has been
restored to its state prior to the start of the transaction

» Committed, after successful completion

The state diagram corresponding to a transaction appears in Figure 15.1. We say
that a transaction has committed only if it has entered the committed state. Similarly,we
say that a transaction has aborted only if it has entered the aborted state. A transaction is
said to have terminated if has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters the
partially committed state. At this point, the transaction has completed its execution, but it
is still possible that it may have to be aborted, since the actual output may still be
temporarily residing in main memory, and thus a hardware failure may preclude its
successful completion.

The database system then writes out enough information to disk that, even in the event of
a failure, the updates performed by the transaction can be re-created when the system
restarts after the failure. When the last of this information is written out, the transaction
enters the committed state.

a.[t]&]]‘r |_|:|r|.'|.r|.'l.l.t|:E"-'|. |
.:mmutted
.

active

~ A~

|\\f"'j]E'-'l//|—-l: abnrtv
Figure15.1 State diagram of a transaction.

e It can restart the transaction, but only if the transaction was aborted as a result of
some hardware or software error that was not created through the internal logic of
the transaction. A restarted transaction is considered to be a new transaction.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

e It can kill the transaction. It usually does so because of some internal logical error
that can be corrected only by rewriting the application program, or because the
input was bad, or because the desired data were not found in the database.

Concurrent Executions:
Multiple transactions are allowed to run concurrently in the system.
Advantages are:
increased processor and disk utilization, leading to better transaction
throughput: one transaction can be using the CPU while another is reading
from or writing to the disk
reduced average response time for transactions: short transactions need not
wait behind long ones.
Concurrency control schemes — mechanisms to achieve isolation, i.e., to control the
interaction among the concurrent transactions in order to prevent them from
destroying the consistency of the database
Schedules
Schedules — sequences that indicate the chronological order in which instructions of
concurrent transactions are executed
* a schedule for a set of transactions must consist of all instructions of those
transactions
* must preserve the order in which the instructions appear in each individual
transaction
Example Schedules
Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B. The
following is a serial schedule (Schedule 1 in the text). in which T1 is followed by T2.

T 12

read(A)

A:=A-50

write (A)

read(B)

B:=B+50

write (B)
read(A)
temp == A * (0.1
A=A temp
write(A)
read(B)
B := B + temp
write(B)

Let T1 and T2 be the transactions defined previously. The following schedule
(Schedule 3 in the text) is not a serial schedule, but it is equivalent to Schedule 1.

T T2

read(A)

A=A -50

write(A)
read(A)
temp :=A*0.1
A=A~ temp
write(A)

read(B)

B:=B + 50

sairtdms f DY

Prepared by: Dr. Subhendu Kumar Rath

In both Schedule 1 and 3, the sum A + B is preserved.

Serializability:
e Basic Assumption — Each transaction preserves database consistency.
e Thus serial execution of a set of transactions preserves database consistency.
e A (possibly concurrent) schedule is serializable if it is equivalent to a serial
schedule. Different forms of schedule equivalence give rise to the notions of:
o conflict serializability
o view serializability
e We ignore operations other than read and write instructions, and we assume that
transactions may perform arbitrary computations on data in local buffers in
between reads and writes. Our simplified schedules consist of only read and
write instructions.
Conflict Serializability
e Instructions li and Ij of transactions Ti and Tj respectively, conflict if and only if
there exists some item Q accessed by both li and lj, and at least one of these
instructions wrote Q.
o li=read(Q), lj = read(Q). liand lj don’t conflict.

o li=read(Q), lj = write(Q). They conflict.
o li=write(Q), lj = read(Q). They conflict
o li=write(Q), lj = write(Q). They conflict

e Intuitively, a conflict between li and Ij forces a (logical) temporal order between
them. If li and lj are consecutive in a schedule and they do not conflict, their
results would remain the same even if they had been interchanged in the schedule.

e If aschedule S can be transformed into a schedule S” by a series of swaps of non-
conflicting instructions, we say that S and S” are conflict equivalent.

e We say that a schedule S is conflict serializable if it is conflict equivalent to a
serial schedule

e Example of a schedule that is not conflict serializable:

T3 | T4
read(Q)

write(Q)
write(Q)

We are unable to swap instructions in the above schedule to obtain either the serial
schedule < T3, T4 >, or the serial schedule < T4, T3 >.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

e Schedule 3 below can be transformed into Schedule 1, a serial schedule where
T2 follows T1, by series of swaps of non-conflicting instructions. Therefore
Schedule 3 is conflict serializable.

T4 1>
read(A)
write (A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

View Serializability
Let Sand S™ be two schedules with the same set of transactions. Sand S™ are view
equivalent if the following three conditions are met:
1. For each data item Q, if transaction Ti reads the initial value of Q
in schedule S, then transaction Ti must, in schedule S°, also read
the initial value of Q.
2. For each data item Q if transaction Ti executes read(Q) in schedule
S, and that value was produced by transaction Tj (if any), then
transaction Ti must in schedule S” also read the value of Q that was
produced by transaction Tj .
3. For each data item Q, the transaction (if any) that performs the
final write(Q) operation in schedule S must perform the final
write(Q) operation in schedule S”.
As can be seen, view equivalence is also based purely on reads and writes alone.
e A schedule S is view serializable it is view equivalent to a serial
schedule.
e Every conflict serializable schedule is also view serializable.
e Schedule 9 (from text) — a schedule which is view-serializable but not
conflict serializable.

e Every view serializable schedule that is not conflict
serializable has blind writes.
Cascading rollback — a single transaction failure leads to a series of transaction
rollbacks. Consider the following schedule where none of the transactions has yet
committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.
Can lead to the undoing of a significant amount of work

Prepared by: Dr. Subhendu Kumar Rath

Concurrency Control

e Lock-Based Protocols
e Timestamp-Based Protocols
e Validation-Based Protocols
e Multiple Granularity
e Multiversion Schemes
e Deadlock Handling
Lock-Based Protocols
e Alock is a mechanism to control concurrent access to a data item
e Data items can be locked in two modes :
0 exclusive (X) mode. Data item can be both read as well as written. X-lock
is requested using lock-X instruction.
o0 shared (S) mode. Data item can only be read. S-lock is requested using
lock-S instruction.
e Lock requests are made to concurrency-control manager. Transaction can proceed
only after request is granted.
e Lock-compatibility matrix

. S X
S | true | false
. X | false | false

e A transaction may be granted a lock on an item if the requested lock is compatible
with locks already held on the item by other transactions

e Any number of transactions can hold shared locks on an item, but if any
transaction holds an exclusive on the item no other transaction may hold any lock
on the item.

e If a lock cannot be granted, the requesting transaction is made to wait till all
incompatible locks held by other transactions have been released. The lock is
then granted.

e Example of a transaction performing locking:

T2: lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

e Locking as above is not sufficient to guarantee serializability — if A and B get
updated in-between the read of A and B, the displayed sum would be wrong.

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

e A locking protocol is a set of rules followed by all transactions while requesting
and releasing locks. Locking protocols restrict the set of possible schedules.

Pitfalls of Lock-Based Protocols:

e Consider the partial schedule

Ts Ty

lock-X(B)

read(B)

B:=B — 50

write (B)
lock-S(A)
read(A)
lock-S(B)

lock-X(A)

e Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to wait
for T3 to release its lock on B, while executing lock-X(A) causes T3 to wait for
T4 to release its lock on A.
e Such asituation is called a deadlock.
o To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.
The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol. This protocol
requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any

new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as

needed. Once the transaction releases a lock, it enters the shrinking phase, and it

can issue no more lock requests.

Prepared by: Dr. Subhendu Kumar Rath

For example, transactions T3 and T4 are two phase. On the other hand, transactions
T1 and T2 are not two phase. Note that the unlock instructions do not need to appear
at the end of the transaction. For example, in the case of transaction T3, we could
move the unlock(B) instruction to just after the lock-X(A) instruction, and still retain
the two-phase locking property.

Ti: lock-X(B);
L;E-a—dlsm; 0 Ty lock-5(A);

Lo) unlockiA);
unlockiB); lock-S(B);
lock-X(A); read(B);
!rdeadif]; " unlock(B);

L= A+ 5l display(A + B).
write{A); Pt
unlockiA).

Figure 16.3 Transaction T%.

Figure16.2 Transaction 13.

Ty lock-X(B): Ty: lock-5(A);
read(B); readiA);
B:= B — 50 lock-5(B);
write{ B); read(E);:
lock-X(A); display(A + B);
readiAj; o
A=A +50: unlock(A);
write{ A): unlock(EB).
unlockiB);
unlockiA). Figure16.6 Transaction T}.

Figure16.5 Transaction T5.

Cascading rollbacks can be avoided by a modification of two-phase locking called the
strict two-phase locking protocol. This protocol requires not only that locking be two
phase, but also that all exclusive-mode locks taken by a transaction be held until that
transaction commits. This requirement ensures that any data written by an uncommitted
transaction are locked in exclusive mode until the transaction commits, preventing any
other transaction from reading the data.

Timestamp-Based Protocols

Timestamps:

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted
by TS(Ti). This timestamp is assigned by the database system before the transaction Ti
starts execution. If a transaction Ti has been assigned timestamp TS(Ti), and a new

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

transaction Tj enters the system, then TS(Ti) < TS(Tj). There are two simple methods for

implementing this scheme:
1. Use the value of the system clock as the timestamp; that is, a transaction’s
timestampis equal to the value of the clock when the transaction enters the system.
2. Use a logical counter that is incremented after a new timestamp has been
assigned; that is, a transaction’s timestamp is equal to the value of the counter
When the transaction enters the system.

The timestamps of the transactions determine the serializability order. Thus, if

TS(Ti) < TS(Tj), then the system must ensure that the produced schedule is equivalent

to a serial schedule in which transaction Ti appears before transaction Tj .

To implement this scheme, we associate with each data item Q two timestamp

values:

» W-timestamp(Q) denotes the largest timestamp of any transaction that executed

write(Q) successfully.

* R-timestamp(Q) denotes the largest timestamp of any transaction that executed

read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is

executed.

The Timestamp-Ordering Protocol:

The timestamp-ordering protocol ensures that any conflicting read and write operations
are executed in timestamp order. This protocol operates as follows:
1. Suppose that transaction Ti issues read(Q).

o If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and Ti is rolled
back.

o If TS(Ti) > W-timestamp(Q), then the read operation is executed, and
Rtimestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q).

o If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was
needed previously, and the system assumed that that value would never be
produced. Hence, the system rejects the write operation and rolls Ti back.

o If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete
value of Q. Hence, the system rejects this write operation and rolls Ti
back. Otherwise, the system executes the write operation and sets W-
timestamp(Q) to TS(Ti).

Prepared by: Dr. Subhendu Kumar Rath

Deadlock Handling

System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction in
the set.

Deadlock prevention protocols ensure that the system will never

enter into a deadlock state. Some prevention strategies :
Require that each transaction locks all its data items before it begins

execution (predeclaration).
Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified by the

partial order (graph-based protocol).

Deadlock Handling

Consider the following two transactions:

T write (X) Ty write(Y)
write(Y) write(X)
Schedule with deadlock
T T
lock-X on
X
wwirita (YY) IOCk'x on Y
write (X)
wait for lock-X on
wait for lock-X on X

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

1. The wait—die scheme is a non preemptive technique. When transaction Ti
requests

a data item currently held by Tj, Ti is allowed to wait only if it has a timestamp
smaller than that of Tj (that is, Ti is older than Tj). Otherwise, Ti is rolled back
(dies).

For example, suppose that transactions T22, T23, and T24 have timestamps 5,
10, and 15, respectively. If T22 requests a data item held by T23, then T22 will

\..nia- £ TOA vAamiiAanta A Aata tAanrna WALA iy TOD HhAanw T il ha vAllAA WAaAL
- There are, however, significant differences in the way that the two schemes
\ operate.

In the wait—die scheme, an older transaction must wait for a younger one to
release its data item. Thus, the older the transaction gets, the more it tends to wait.
By contrast, in the wound—wait scheme, an older transaction never waits for a
younger transaction.

In the wait—die scheme, if a transaction Ti dies and is rolled back because it
requested a data item held by transaction Tj, then Ti may reissue the same
sequence of requests when it is restarted. If the data item is still held by Tj, then Ti
will die again. Thus, Ti may die several times before acquiring the needed data
item. Contrast this series of events with what happens in the wound—wait scheme.
Transaction Ti is wounded and rolled back because Tj requested a data item that it
holds. When Ti is restarted and requests the data item now being held by Tj , Ti
waits. Thus, there may be fewer rollbacks in the wound—wait scheme.

The major problem with both of these schemes is that unnecessary rollbacks may
occur.

—_— — -~ -

Timeout-Based Schemes :

* atransaction waits for a lock only for a specified amount of time.
After that, the wait times out and the transaction is rolled back.

X thus deadlocks are not possible

* simple to implement; but starvation is possible. Also difficult to
determine good value of the timeout interval.

Prepared by: Dr. Subhendu Kumar Rath

Deadlock Detection (Cont.)

Wait-for graph without a cycle ~ Wait-for graph with a cycle

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

Deadlock Detection

Deadlocks can be described as a wait-for graph, which consists of a

pair G = (V,E),
V is a set of vertices (all the transactions in the system)
E is a set of edges; each element is an ordered pair T; —>T;.

If T, Tjis in E, then there is a directed edge from T; to T;, implying
that T; is waiting for T; to release a data item.

When T, requests a data item currently being held by T;, then the
edge T; T;is inserted in the wait-for graph. This edge is
removed only when T; is no longer holding a data item needed
by Ti.

The system is in a deadlock state if and only if the wait-for graph
has a cycle. Must invoke a deadlock-detection algorithm
periodically to look for cycles.

Prepared by: Dr. Subhendu Kumar Rath

Recovery from Deadlock:

When a detection algorithm determines that a deadlock exists, the system must recover
from the deadlock. The most common solution is to roll back one or more transactions to
break the
deadlock. Three actions need to be taken:
1. Selection of a victim. Given a set of deadlocked transactions, we must determine
which transaction (or transactions) to roll back to break the deadlock. We should roll
back those transactions that will incur the minimum cost. Unfortunately, the term
minimum cost is not a precise one. Many factors may determine the cost of a rollback,
including

a. How long the transaction has computed, and how much longer the transaction

will compute before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.
2. Rollback. Once we have decided that a particular transaction must be rolled back, we
must determine how far this transaction should be rolled back. The simplest solution is a
total rollback: Abort the transaction and then restart it. However, it is more effective to
roll back the transaction only as far as necessary to break the deadlock. Such partial
rollback requires the system to maintain additional information about the state of all the
running transactions. Specially, the sequence of lock requests/grants and updates
performed by the transaction needs to be recorded. The deadlock detection mechanism
should decide which locks the selected transaction needs to release in order to break the
deadlock. The selected transaction must be rolled back to the point where it obtained the
.Ist of these locks, undoing all actions it took after that point. The recovery mechanism
must be capable of performing such partial rollbacks. Furthermore, the transactions must
be capable of resuming execution after a partial rollback. See the bibliographical notes for
relevant references.
3. Starvation. In a system where the selection of victims is based primarily on cost

factors, it may happen that the same transaction is always picked as a victim. As a result,

Prepared by: Dr. Subhendu Kumar Rath, BPUT.

this transaction never completes its designated task, thus there is starvation. We must
ensure that transaction can be picked as a victim only a (small) .nite number of times. The

most common solution is to include the number of rollbacks in the cost factor.

The Phantom Phenomenon

Consider transaction T29 that executes the following SQL query on the bank database:
select sum(balance) from account where branch-name = *Perryridge’

Transaction T29 requires access to all tuples of the account relation pertaining to the
Perryridge branch.

Let T30 be a transaction that executes the following SQL insertion:

insert into account values (A-201, "Perryridge’, 900)

Let S be a schedule involving T29 and T30. We expect there to be potential for a conflict

for the following reasons:

If T29 uses the tuple newly inserted by T30 in computing sum(balance), then

T29 read a value written by T30. Thus, in a serial schedule equivalent to S, T30

must come before T29.

If T29 does not use the tuple newly inserted by T30 in computing sum(balance),

then in a serial schedule equivalent to S, T29 must come before T30.
The second of these two cases is curious. T29 and T30 do not access any tuple in
common, yet they con.ictwith each other! In effect, T29 and T30 con.ict on a phantom
tuple. If concurrency control is performed at the tuple granularity, this con.ict would go
undetected. This problem is called the phantom phenomenon.

------ THANK YOU----

	DBMS
	DBMS
	CODD'S RULES
	Rule 1 : The information Rule.
	Rule 2 : Guaranteed access Rule.
	Rule 3 : Systematic treatment of null values.
	Rule 4 : Dynamic on-line catalog based on the relational model.
	Rule 5 : Comprehensive data sub-language Rule.
	Rule 6 : .View updating Rule
	Rule 7 : High-level insert, update and delete.
	Rule 8 : Physical data independence.
	Rule 9 : Logical data independence.
	Rule 10 : Integrity independence.
	Rule 11 : Distribution independence.
	Rule 12 : Non-subversion Rule.

	Employee ft_works
	RELATIONAL DATABASE DEGIN
	Data base design is a process in which you create a logical data model for a database, which store data of a company. It is performed after initial database study phase in the database life cycle. You use normalization technique to create the logical ...
	Data base design process:
	We can identify six main phases of the database design process:
	Requirement collection and analysis
	Conceptual data base design
	Choice of a DBMS
	Data model mapping(logical database design)
	physical data base design
	database system implementation and tuning
	Requirement collection and analysis
	2. Conceptual data base design
	3. Choice of a DBMS
	FUNCTIONAL DEPENDENCIES:
	The functional dependency x→y
	Holds on scema R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such that t1[x]=t2[x]. it is also the case that t1[y]=t2[y]

